import numpy as np import pytest import torch input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]] offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]], [[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]], [[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]], [[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]] offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7] deform_weight = [[[0.4, 0.2, 0.1, 0.9]]] gt_out = [[[[1.650, 0.], [0.000, 0.]]]] gt_x_grad = [[[[-0.666, 0.204, 0.000], [0.030, -0.416, 0.012], [0.000, 0.252, 0.129]]]] gt_offset_weight_grad = [[[[1.44, 2.88], [0.00, 1.44]]], [[[-0.72, -1.44], [0.00, -0.72]]], [[[0.00, 0.00], [0.00, 0.00]]], [[[0.00, 0.00], [0.00, 0.00]]], [[[-0.10, -0.20], [0.00, -0.10]]], [[[-0.08, -0.16], [0.00, -0.08]]], [[[-0.54, -1.08], [0.00, -0.54]]], [[[-0.54, -1.08], [0.00, -0.54]]]] gt_offset_bias_grad = [1.44, -0.72, 0., 0., -0.10, -0.08, -0.54, -0.54], gt_deform_weight_grad = [[[[3.62, 0.], [0.40, 0.18]]]] class TestDeformconv(object): def _test_deformconv(self, dtype=torch.float, threshold=1e-3): if not torch.cuda.is_available(): return from mmcv.ops import DeformConv2dPack c_in = 1 c_out = 1 x = torch.Tensor(input).cuda().type(dtype) x.requires_grad = True model = DeformConv2dPack(c_in, c_out, 2, stride=1, padding=0) model.conv_offset.weight.data = torch.nn.Parameter( torch.Tensor(offset_weight).reshape(8, 1, 2, 2)) model.conv_offset.bias.data = torch.nn.Parameter( torch.Tensor(offset_bias).reshape(8)) model.weight.data = torch.nn.Parameter( torch.Tensor(deform_weight).reshape(1, 1, 2, 2)) model.cuda().type(dtype) out = model(x) out.backward(torch.ones_like(out)) assert np.allclose(out.data.detach().cpu().numpy(), gt_out, threshold) assert np.allclose(x.grad.detach().cpu().numpy(), gt_x_grad, threshold) assert np.allclose( model.conv_offset.weight.grad.detach().cpu().numpy(), gt_offset_weight_grad, threshold) assert np.allclose(model.conv_offset.bias.grad.detach().cpu().numpy(), gt_offset_bias_grad, threshold) assert np.allclose(model.weight.grad.detach().cpu().numpy(), gt_deform_weight_grad, threshold) from mmcv.ops import DeformConv2d # test bias model = DeformConv2d(1, 1, 2, stride=1, padding=0) assert not hasattr(model, 'bias') # test bias=True with pytest.raises(AssertionError): model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True) # test in_channels % group != 0 with pytest.raises(AssertionError): model = DeformConv2d(3, 2, 3, groups=2) # test out_channels % group != 0 with pytest.raises(AssertionError): model = DeformConv2d(3, 4, 3, groups=3) def test_deformconv(self): self._test_deformconv(torch.double) self._test_deformconv(torch.float) self._test_deformconv(torch.half, 1e-1)