mirror of https://github.com/open-mmlab/mmcv.git
686 lines
27 KiB
Markdown
686 lines
27 KiB
Markdown
# MMCV Operators
|
|
|
|
To make custom operators in MMCV more standard, precise definitions of each operator are listed in this document.
|
|
|
|
<!-- TOC -->
|
|
- [MMCV Operators](#mmcv-operators)
|
|
- [MMCVBorderAlign](#mmcvborderalign)
|
|
- [Description](#description)
|
|
- [Parameters](#parameters)
|
|
- [Inputs](#inputs)
|
|
- [Outputs](#outputs)
|
|
- [Type Constraints](#type-constraints)
|
|
- [MMCVCARAFE](#mmcvcarafe)
|
|
- [Description](#description-1)
|
|
- [Parameters](#parameters-1)
|
|
- [Inputs](#inputs-1)
|
|
- [Outputs](#outputs-1)
|
|
- [Type Constraints](#type-constraints-1)
|
|
- [MMCVCAWeight](#mmcvcaweight)
|
|
- [Description](#description-2)
|
|
- [Parameters](#parameters-2)
|
|
- [Inputs](#inputs-2)
|
|
- [Outputs](#outputs-2)
|
|
- [Type Constraints](#type-constraints-2)
|
|
- [MMCVCAMap](#mmcvcamap)
|
|
- [Description](#description-3)
|
|
- [Parameters](#parameters-3)
|
|
- [Inputs](#inputs-3)
|
|
- [Outputs](#outputs-3)
|
|
- [Type Constraints](#type-constraints-3)
|
|
- [MMCVCornerPool](#mmcvcornerpool)
|
|
- [Description](#description-4)
|
|
- [Parameters](#parameters-4)
|
|
- [Inputs](#inputs-4)
|
|
- [Outputs](#outputs-4)
|
|
- [Type Constraints](#type-constraints-4)
|
|
- [MMCVDeformConv2d](#mmcvdeformconv2d)
|
|
- [Description](#description-5)
|
|
- [Parameters](#parameters-5)
|
|
- [Inputs](#inputs-5)
|
|
- [Outputs](#outputs-5)
|
|
- [Type Constraints](#type-constraints-5)
|
|
- [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d)
|
|
- [Description](#description-6)
|
|
- [Parameters](#parameters-6)
|
|
- [Inputs](#inputs-6)
|
|
- [Outputs](#outputs-6)
|
|
- [Type Constraints](#type-constraints-6)
|
|
- [MMCVDeformRoIPool](#mmcvdeformroipool)
|
|
- [Description](#description-7)
|
|
- [Parameters](#parameters-7)
|
|
- [Inputs](#inputs-7)
|
|
- [Outputs](#outputs-7)
|
|
- [Type Constraints](#type-constraints-7)
|
|
- [MMCVMaskedConv2d](#mmcvmaskedconv2d)
|
|
- [Description](#description-8)
|
|
- [Parameters](#parameters-8)
|
|
- [Inputs](#inputs-8)
|
|
- [Outputs](#outputs-8)
|
|
- [Type Constraints](#type-constraints-8)
|
|
- [MMCVPSAMask](#mmcvpsamask)
|
|
- [Description](#description-9)
|
|
- [Parameters](#parameters-9)
|
|
- [Inputs](#inputs-9)
|
|
- [Outputs](#outputs-9)
|
|
- [Type Constraints](#type-constraints-9)
|
|
- [NonMaxSuppression](#nonmaxsuppression)
|
|
- [Description](#description-10)
|
|
- [Parameters](#parameters-10)
|
|
- [Inputs](#inputs-10)
|
|
- [Outputs](#outputs-10)
|
|
- [Type Constraints](#type-constraints-10)
|
|
- [MMCVRoIAlign](#mmcvroialign)
|
|
- [Description](#description-11)
|
|
- [Parameters](#parameters-11)
|
|
- [Inputs](#inputs-11)
|
|
- [Outputs](#outputs-11)
|
|
- [Type Constraints](#type-constraints-11)
|
|
- [MMCVRoIAlignRotated](#mmcvroialignrotated)
|
|
- [Description](#description-12)
|
|
- [Parameters](#parameters-12)
|
|
- [Inputs](#inputs-12)
|
|
- [Outputs](#outputs-12)
|
|
- [Type Constraints](#type-constraints-12)
|
|
- [grid_sampler*](#grid_sampler)
|
|
- [Description](#description-13)
|
|
- [Parameters](#parameters-13)
|
|
- [Inputs](#inputs-13)
|
|
- [Outputs](#outputs-13)
|
|
- [Type Constraints](#type-constraints-13)
|
|
- [cummax*](#cummax)
|
|
- [Description](#description-14)
|
|
- [Parameters](#parameters-14)
|
|
- [Inputs](#inputs-14)
|
|
- [Outputs](#outputs-14)
|
|
- [Type Constraints](#type-constraints-14)
|
|
- [cummin*](#cummin)
|
|
- [Description](#description-15)
|
|
- [Parameters](#parameters-15)
|
|
- [Inputs](#inputs-15)
|
|
- [Outputs](#outputs-15)
|
|
- [Type Constraints](#type-constraints-15)
|
|
- [Reminders](#reminders)
|
|
<!-- TOC -->
|
|
|
|
## MMCVBorderAlign
|
|
|
|
### Description
|
|
|
|
Applies `border_align` over the input feature based on predicted bboxes.
|
|
|
|
For each border line (e.g. top, left, bottom or right) of each box,
|
|
border_align does the following:
|
|
|
|
- uniformly samples `pool_size`+1 positions on this line, involving the start and end points.
|
|
- the corresponding features on these points are computed by bilinear interpolation.
|
|
- max pooling over all the `pool_size`+1 positions are used for computing pooled feature.
|
|
|
|
Read [BorderDet: Border Feature for Dense Object Detection](ttps://arxiv.org/abs/2007.11056) for more detailed information.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|-------|-------------|-------------------------------------------------------------------------------------|
|
|
| `int` | `pool_size` | number of positions sampled over the boxes' borders(e.g. top, bottom, left, right). |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>Features with shape [N,4C,H,W]. Channels ranged in [0,C), [C,2C), [2C,3C), [3C,4C) represent the top, left, bottom, right features respectively</dd>
|
|
<dt><tt>boxes</tt>: T</dt>
|
|
<dd>Boxes with shape [N,H*W,4]. Coordinate format (x1,y1,x2,y2).</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>Pooled features with shape [N,C,H*W,4]. The order is(top,left,bottom,right) for the last dimension.</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## MMCVCARAFE
|
|
|
|
### Description
|
|
|
|
CARAFE operator performs feature upsampling.
|
|
|
|
Read [CARAFE: Content-Aware ReAssembly of FEatures](https://arxiv.org/abs/1905.02188) for more detailed information.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|---------|----------------|-----------------------------------------------|
|
|
| `int` | `kernel_size` | reassemble kernel size, should be odd integer |
|
|
| `int` | `group_size` | reassemble group size |
|
|
| `float` | `scale_factor` | upsample ratio(>=1) |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>features</tt>: T</dt>
|
|
<dd>Input features. 4-D tensor of shape (N, C, H, W). N is the batch size.</dd>
|
|
<dt><tt>masks</tt>: T</dt>
|
|
<dd>The input mask</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>The upsampled features. 4-D tensor of shape (N, C, H * scale_factor, W * scale_factor). N is the batch size.</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## MMCVCAWeight
|
|
|
|
### Description
|
|
|
|
Operator for Criss-Cross Attention
|
|
Read [CCNet: Criss-Cross Attention for SemanticSegmentation](https://arxiv.org/pdf/1811.11721.pdf) for more detailed information.
|
|
|
|
### Parameters
|
|
|
|
None
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>t</tt>: T</dt>
|
|
<dd>The query matrix of shape (N, C', H, W).</dd>
|
|
<dt><tt>f</tt>: T</dt>
|
|
<dd>The key matrix of shape (N, C', H, W).</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>weight</tt>: T</dt>
|
|
<dd>The attention map of shape (N, H+W-1, H, W).</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## MMCVCAMap
|
|
|
|
### Description
|
|
|
|
Operator for Criss-Cross Attention
|
|
Read [CCNet: Criss-Cross Attention for SemanticSegmentation](https://arxiv.org/pdf/1811.11721.pdf) for more detailed information.
|
|
|
|
### Parameters
|
|
|
|
None
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>weight</tt>: T</dt>
|
|
<dd>Output from the operator MMCVCAWeight.</dd>
|
|
<dt><tt>value</tt>: T</dt>
|
|
<dd>The value matrix of shape (N, C, H, W).</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>Output tensor of aggregated contextual information</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
|
|
## MMCVCornerPool
|
|
|
|
### Description
|
|
|
|
Perform CornerPool on `input` features. Read [CornerNet -- Detecting Objects as Paired Keypoints](https://arxiv.org/abs/1808.01244) for more details.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|-------|-----------|------------------------------------------------------------------|
|
|
| `int` | `mode` | corner pool mode, (0: `top`, 1: `bottom`, 2: `left`, 3: `right`) |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>Input features. 4-D tensor of shape (N, C, H, W). N is the batch size.</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>The pooled features. 4-D tensor of shape (N, C, H, W).</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## MMCVDeformConv2d
|
|
|
|
### Description
|
|
|
|
Applies a deformable 2D convolution over an input signal composed of several input planes.
|
|
|
|
Read [Deformable Convolutional Networks](https://arxiv.org/pdf/1703.06211.pdf) for detail.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|----------------|---------------------|-------------------------------------------------------------------------------------------------------------------|
|
|
| `list of ints` | `stride` | The stride of the convolving kernel, (sH, sW). Defaults to `(1, 1)`. |
|
|
| `list of ints` | `padding` | Paddings on both sides of the input, (padH, padW). Defaults to `(0, 0)`. |
|
|
| `list of ints` | `dilation` | The spacing between kernel elements (dH, dW). Defaults to `(1, 1)`. |
|
|
| `int` | `groups` | Split input into groups. `input_channel` should be divisible by the number of groups. Defaults to `1`. |
|
|
| `int` | `deformable_groups` | Groups of deformable offset. Defaults to `1`. |
|
|
| `int` | `bias` | Whether to add a learnable bias to the output. `0` stands for `False` and `1` stands for `True`. Defaults to `0`. |
|
|
| `int` | `im2col_step` | Groups of deformable offset. Defaults to `32`. |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.</dd>
|
|
<dt><tt>offset</tt>: T</dt>
|
|
<dd>Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW is the height and width of offset and output.</dd>
|
|
<dt><tt>weight</tt>: T</dt>
|
|
<dd>Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>Output feature; 4-D tensor of shape (N, output_channel, outH, outW).</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32, Linear)
|
|
|
|
## MMCVModulatedDeformConv2d
|
|
|
|
### Description
|
|
|
|
Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|----------------|---------------------|---------------------------------------------------------------------------------------|
|
|
| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) |
|
|
| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) |
|
|
| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) |
|
|
| `int` | `deformable_groups` | Groups of deformable offset. |
|
|
| `int` | `groups` | Split input into groups. `input_channel` should be divisible by the number of groups. |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>feature</tt>: T</dt>
|
|
<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.</dd>
|
|
<dt><tt>offset</tt>: T</dt>
|
|
<dd>Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.</dd>
|
|
<dt><tt>mask</tt>: T</dt>
|
|
<dd>Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.</dd>
|
|
<dt><tt>weight]</tt>: T</dt>
|
|
<dd>Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).</dd>
|
|
<dt><tt>bias</tt>: T, optional</dt>
|
|
<dd>Input bias; 1-D tensor of shape (output_channel).</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>Output feature; 4-D tensor of shape (N, output_channel, outH, outW).</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32, Linear)
|
|
|
|
## MMCVDeformRoIPool
|
|
|
|
### Description
|
|
|
|
Deformable roi pooling layer
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|---------|------------------|---------------------------------------------------------------------------------------------------------------|
|
|
| `int` | `output_height` | height of output roi |
|
|
| `int` | `output_width` | width of output roi |
|
|
| `float` | `spatial_scale` | used to scale the input boxes |
|
|
| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
|
|
| `float` | `gamma` | gamma |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd>
|
|
<dt><tt>rois</tt>: T</dt>
|
|
<dd>RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.</dd>
|
|
<dt><tt>offset</tt>: T</dt>
|
|
<dd>offset of height and width. Defaults to a tensor of zero</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>feat</tt>: T</dt>
|
|
<dd>RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].<dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## MMCVMaskedConv2d
|
|
|
|
### Description
|
|
|
|
Performs a masked 2D convolution from PixelRNN
|
|
Read [Pixel Recurrent Neural Networks](https://arxiv.org/abs/1601.06759) for more detailed information.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|----------------|-----------|----------------------------------------------------------------------------------|
|
|
| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW). **Only support stride=1 in mmcv** |
|
|
| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW). Defaults to `(0, 0)`. |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>features</tt>: T</dt>
|
|
<dd>Input features; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd>
|
|
<dt><tt>mask</tt>: T</dt>
|
|
<dd>Input mask; 3D tensor of shape (N, H, W)</dd>
|
|
<dt><tt>weight</tt>: T</dt>
|
|
<dd>The learnable weights of the module</dd>
|
|
<dt><tt>bias</tt>: T</dt>
|
|
<dd>The learnable bias of the module</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>The output convolved feature</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## MMCVPSAMask
|
|
|
|
### Description
|
|
|
|
An operator from PSANet.
|
|
|
|
Read [PSANet: Point-wise Spatial Attention Network for Scene Parsing](https://hszhao.github.io/papers/eccv18_psanet.pdf) for more detailed information.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|----------------|-------------|----------------------------------------------|
|
|
| `int` | `psa_type` | `0` means collect and `1` means `distribute` |
|
|
| `list of ints` | `mask_size` | The size of mask |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>Input feature; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>Output tensor of shape (N, H * W, H, W)</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## NonMaxSuppression
|
|
|
|
### Description
|
|
|
|
Filter out boxes has high IoU overlap with previously selected boxes or low score. Output the indices of valid boxes.
|
|
|
|
Note this definition is slightly different with [onnx: NonMaxSuppression](https://github.com/onnx/onnx/blob/master/docs/Operators.md#nonmaxsuppression)
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|---------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|
|
| `int` | `center_point_box` | 0 - the box data is supplied as [y1, x1, y2, x2], 1-the box data is supplied as [x_center, y_center, width, height]. |
|
|
| `int` | `max_output_boxes_per_class` | The maximum number of boxes to be selected per batch per class. Default to 0, number of output boxes equal to number of input boxes. |
|
|
| `float` | `iou_threshold` | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range [0, 1]. Default to 0. |
|
|
| `float` | `score_threshold` | The threshold for deciding when to remove boxes based on score. |
|
|
| `int` | `offset` | 0 or 1, boxes' width or height is (x2 - x1 + offset). |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>boxes</tt>: T</dt>
|
|
<dd>Input boxes. 3-D tensor of shape (num_batches, spatial_dimension, 4).</dd>
|
|
<dt><tt>scores</tt>: T</dt>
|
|
<dd>Input scores. 3-D tensor of shape (num_batches, num_classes, spatial_dimension).</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>indices</tt>: tensor(int32, Linear)</dt>
|
|
<dd>Selected indices. 2-D tensor of shape (num_selected_indices, 3) as [[batch_index, class_index, box_index], ...].</dd>
|
|
<dd>num_selected_indices=num_batches* num_classes* min(max_output_boxes_per_class, spatial_dimension).</dd>
|
|
<dd>All invalid indices will be filled with -1.</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32, Linear)
|
|
|
|
## MMCVRoIAlign
|
|
|
|
### Description
|
|
|
|
Perform RoIAlign on output feature, used in bbox_head of most two-stage detectors.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|---------|------------------|---------------------------------------------------------------------------------------------------------------|
|
|
| `int` | `output_height` | height of output roi |
|
|
| `int` | `output_width` | width of output roi |
|
|
| `float` | `spatial_scale` | used to scale the input boxes |
|
|
| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
|
|
| `str` | `mode` | pooling mode in each bin. `avg` or `max` |
|
|
| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd>
|
|
<dt><tt>rois</tt>: T</dt>
|
|
<dd>RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>feat</tt>: T</dt>
|
|
<dd>RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].<dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## MMCVRoIAlignRotated
|
|
|
|
### Description
|
|
|
|
Perform RoI align pooling for rotated proposals
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|---------|------------------|---------------------------------------------------------------------------------------------------------------|
|
|
| `int` | `output_height` | height of output roi |
|
|
| `int` | `output_width` | width of output roi |
|
|
| `float` | `spatial_scale` | used to scale the input boxes |
|
|
| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
|
|
| `str` | `mode` | pooling mode in each bin. `avg` or `max` |
|
|
| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. |
|
|
| `int` | `clockwise` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>features</tt>: T</dt>
|
|
<dd>Input feature map; 4D tensor of shape (N, C, H, W)</dd>
|
|
<dt><tt>rois</tt>: T</dt>
|
|
<dd>RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dd>RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].<dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## grid_sampler*
|
|
|
|
### Description
|
|
|
|
Perform sample from `input` with pixel locations from `grid`.
|
|
|
|
Check [torch.nn.functional.grid_sample](https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html?highlight=grid_sample#torch.nn.functional.grid_sample) for more information.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|-------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) |
|
|
| `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) |
|
|
| `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.</dd>
|
|
<dt><tt>grid</tt>: T</dt>
|
|
<dd>Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW are the height and width of offset and output. </dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>Output feature; 4-D tensor of shape (N, C, outH, outW).</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32, Linear)
|
|
|
|
## cummax*
|
|
|
|
### Description
|
|
|
|
Returns a tuple (`values`, `indices`) where `values` is the cumulative maximum elements of `input` in the dimension `dim`. And `indices` is the index location of each maximum value found in the dimension `dim`. Read [torch.cummax](https://pytorch.org/docs/stable/generated/torch.cummax.html) for more details.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|-------|-----------|----------------------------------------|
|
|
| `int` | `dim` | the dimension to do the operation over |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>The input tensor with various shapes. Tensor with empty element is also supported.</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>Output the cumulative maximum elements of `input` in the dimension `dim`, with the same shape and dtype as `input`.</dd>
|
|
<dt><tt>indices</tt>: tensor(int64)</dt>
|
|
<dd>Output the index location of each cumulative maximum value found in the dimension `dim`, with the same shape as `input`.</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## cummin*
|
|
|
|
### Description
|
|
|
|
Returns a tuple (`values`, `indices`) where `values` is the cumulative minimum elements of `input` in the dimension `dim`. And `indices` is the index location of each minimum value found in the dimension `dim`. Read [torch.cummin](https://pytorch.org/docs/stable/generated/torch.cummin.html) for more details.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
|-------|-----------|----------------------------------------|
|
|
| `int` | `dim` | the dimension to do the operation over |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>The input tensor with various shapes. Tensor with empty element is also supported.</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>Output the cumulative minimum elements of `input` in the dimension `dim`, with the same shape and dtype as `input`.</dd>
|
|
<dt><tt>indices</tt>: tensor(int64)</dt>
|
|
<dd>Output the index location of each cumulative minimum value found in the dimension `dim`, with the same shape as `input`.</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## Reminders
|
|
|
|
- Operators endwith `*` are defined in Torch and are included here for the conversion to ONNX.
|