mmcv/docs/zh_cn/understand_mmcv/runner.md

160 lines
6.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

## 执行器
执行器模块负责模型训练过程调度,主要目的是让用户使用更少的代码以及灵活可配置方式开启训练。其具备如下核心特性:
- 支持以 `EpochBasedRunner``IterBasedRunner` 为单位的迭代模式以满足不同场景
- 支持定制工作流以满足训练过程中各状态自由切换,目前支持训练和验证两个工作流。工作流可以简单理解为一个完成的训练和验证迭代过程。
- 配合各类默认和自定义 Hook对外提供了灵活扩展能力
### EpochBasedRunner
顾名思义,`EpochBasedRunner` 是指以 epoch 为周期的工作流,例如设置 workflow = \[('train', 2), ('val', 1)\] 表示循环迭代地训练 2 个 epoch然后验证 1 个 epoch。MMDetection 目标检测框架默认采用的是 `EpochBasedRunner`
其抽象逻辑如下所示:
```python
# 训练终止条件
while curr_epoch < max_epochs:
# 遍历用户设置的工作流,例如 workflow = [('train', 2)('val', 1)]
for i, flow in enumerate(workflow):
# mode 是工作流函数,例如 train, epochs 是迭代次数
mode, epochs = flow
# 要么调用 self.train(),要么调用 self.val()
epoch_runner = getattr(self, mode)
# 运行对应工作流函数
for _ in range(epochs):
epoch_runner(data_loaders[i], **kwargs)
```
目前支持训练和验证两个工作流,以训练函数为例,其抽象逻辑是:
```python
# epoch_runner 目前可以是 train 或者 val
def train(self, data_loader, **kwargs):
# 遍历 dataset共返回一个 epoch 的 batch 数据
for i, data_batch in enumerate(data_loader):
self.call_hook('before_train_iter')
# 验证时候 train_mode=False
self.run_iter(data_batch, train_mode=True, **kwargs)
self.call_hook('after_train_iter')
self.call_hook('after_train_epoch')
```
### IterBasedRunner
不同于 `EpochBasedRunner``IterBasedRunner` 是指以 iter 为周期的工作流,例如设置 workflow = \[('train', 2) ('val', 1)\] 表示循环迭代的训练 2 个 iter然后验证 1 个 iterMMSegmentation 语义分割框架默认采用的是 `IterBasedRunner`
其抽象逻辑如下所示:
```python
# 虽然是 iter 单位,但是某些场合需要 epoch 信息,由 IterLoader 提供
iter_loaders = [IterLoader(x) for x in data_loaders]
# 训练终止条件
while curr_iter < max_iters:
# 遍历用户设置的工作流,例如 workflow = [('train', 2) ('val', 1)]
for i, flow in enumerate(workflow):
# mode 是工作流函数,例如 train, iters 是迭代次数
mode, iters = flow
# 要么调用 self.train(),要么调用 self.val()
iter_runner = getattr(self, mode)
# 运行对应工作流函数
for _ in range(iters):
iter_runner(iter_loaders[i], **kwargs)
```
目前支持训练和验证两个工作流,以验证函数为例,其抽象逻辑是:
```python
# iter_runner 目前可以是 train 或者 val
def val(self, data_loader, **kwargs):
# 获取 batch 数据,用于一次迭代
data_batch = next(data_loader)
self.call_hook('before_val_iter')
outputs = self.model.val_step(data_batch, self.optimizer, **kwargs)
self.outputs = outputs
self.call_hook('after_val_iter')
```
除了上述基础功能外,`EpochBasedRunner` 和 `IterBasedRunner` 还提供了 resume 、 save_checkpoint 和注册 hook 功能。
### 一个简单例子
以最常用的分类任务为例详细说明 `runner` 的使用方法。 开启任何一个训练任务,都需要包括如下步骤:
**(1) dataloader、model 和优化器等类初始化**
```python
# 模型类初始化
model=...
# 优化器类初始化,典型值 cfg.optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer = build_optimizer(model, cfg.optimizer)
# 工作流对应的 dataloader 初始化
data_loaders = [
build_dataloader(
ds,
cfg.data.samples_per_gpu,
cfg.data.workers_per_gpu,
...) for ds in dataset
]
```
**(2) runner 类初始化**
```python
runner = build_runner(
# cfg.runner 典型配置为
# runner = dict(type='EpochBasedRunner', max_epochs=200)
cfg.runner,
default_args=dict(
model=model,
batch_processor=None,
optimizer=optimizer,
logger=logger))
```
**(3) 注册默认训练所必须的 hook和用户自定义 hook**
```python
# 注册定制必需的 hook
runner.register_training_hooks(
# lr相关配置典型为
# lr_config = dict(policy='step', step=[100, 150])
cfg.lr_config,
# 优化相关配置,例如 grad_clip 等
optimizer_config,
# 权重保存相关配置,典型为
# checkpoint_config = dict(interval=1),每个单位都保存权重
cfg.checkpoint_config,
# 日志相关配置
cfg.log_config,
...)
# 注册用户自定义 hook
# 例如想使用 ema 功能,则可以设置 custom_hooks=[dict(type='EMAHook')]
if cfg.get('custom_hooks', None):
custom_hooks = cfg.custom_hooks
for hook_cfg in cfg.custom_hooks:
hook_cfg = hook_cfg.copy()
priority = hook_cfg.pop('priority', 'NORMAL')
hook = build_from_cfg(hook_cfg, HOOKS)
runner.register_hook(hook, priority=priority)
```
然后可以进行 resume 或者 load_checkpoint 对权重进行加载。
**(4) 开启训练流**
```python
# workflow 典型为 workflow = [('train', 1)]
# 此时就真正开启了训练
runner.run(data_loaders, cfg.workflow)
```
关于 workflow 设置,以 `EpochBasedRunner` 为例,详情如下:
- 假设只想运行训练工作流,则可以设置 workflow = \[('train', 1)\],表示只进行迭代训练
- 假设想运行训练和验证工作流,则可以设置 workflow = \[('train', 3), ('val', 1)\],表示先训练 3 个 epoch ,然后切换到 val 工作流,运行 1 个 epoch然后循环直到训练 epoch 次数达到指定值
- 工作流设置还自由定制,例如你可以先验证再训练 workflow = \[('val', 1), ('train', 1)\]
上述代码都已经封装到了各个代码库的 train.py 中,用户只需要设置相应的配置即可,上述流程会自动运行。