mmcv/tests/test_ops/test_correlation.py

57 lines
1.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcv.ops import Correlation
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MUSA_AVAILABLE
_input1 = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
_input2 = [[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]]]]
gt_out_shape = (1, 1, 1, 3, 3)
_gt_out = [[[[[1., 4., 9.], [0., 1., 4.], [24., 25., 4.]]]]]
gt_input1_grad = [[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]]]]
def assert_equal_tensor(tensor_a, tensor_b):
assert tensor_a.eq(tensor_b).all()
class TestCorrelation:
def _test_correlation(self, dtype=torch.float):
layer = Correlation(max_displacement=0)
if IS_CUDA_AVAILABLE:
input1 = torch.tensor(_input1, dtype=dtype).cuda()
input2 = torch.tensor(_input2, dtype=dtype).cuda()
elif IS_MUSA_AVAILABLE:
input1 = torch.tensor(_input1, dtype=dtype).musa()
input2 = torch.tensor(_input2, dtype=dtype).musa()
input1.requires_grad = True
input2.requires_grad = True
out = layer(input1, input2)
out.backward(torch.ones_like(out))
# `eq_cpu` is not implemented for 'Half' in torch1.5.0,
# so we need to make a comparison for cuda/musa tensor
# rather than cpu tensor
if IS_CUDA_AVAILABLE:
gt_out = torch.tensor(_gt_out, dtype=dtype).cuda()
elif IS_MUSA_AVAILABLE:
gt_out = torch.tensor(_gt_out, dtype=dtype).musa()
assert_equal_tensor(out, gt_out)
assert_equal_tensor(input1.grad.detach(), input2)
assert_equal_tensor(input2.grad.detach(), input1)
@pytest.mark.skipif(
(not torch.cuda.is_available()) and (not IS_MUSA_AVAILABLE),
reason='requires CUDA/MUSA support')
def test_correlation(self):
self._test_correlation(torch.float)
if IS_CUDA_AVAILABLE:
self._test_correlation(torch.double)
self._test_correlation(torch.half)