mmcv/tests/test_ops/test_box_iou_quadri.py

78 lines
3.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch
from mmcv.utils import IS_CUDA_AVAILABLE
class TestBoxIoUQuadri:
@pytest.mark.parametrize('device', [
'cpu',
pytest.param(
'cuda',
marks=pytest.mark.skipif(
not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
])
def test_box_iou_quadri_cuda(self, device):
from mmcv.ops import box_iou_quadri
np_boxes1 = np.asarray([[1.0, 1.0, 3.0, 4.0, 4.0, 4.0, 4.0, 1.0],
[2.0, 2.0, 3.0, 4.0, 4.0, 2.0, 3.0, 1.0],
[7.0, 7.0, 8.0, 8.0, 9.0, 7.0, 8.0, 6.0]],
dtype=np.float32)
np_boxes2 = np.asarray([[0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0],
[2.0, 1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 1.0],
[7.0, 6.0, 7.0, 8.0, 9.0, 8.0, 9.0, 6.0]],
dtype=np.float32)
np_expect_ious = np.asarray(
[[0.0714, 1.0000, 0.0000], [0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.5000]],
dtype=np.float32)
np_expect_ious_aligned = np.asarray([0.0714, 0.5000, 0.5000],
dtype=np.float32)
boxes1 = torch.from_numpy(np_boxes1).to(device)
boxes2 = torch.from_numpy(np_boxes2).to(device)
ious = box_iou_quadri(boxes1, boxes2)
assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
ious = box_iou_quadri(boxes1, boxes2, aligned=True)
assert np.allclose(
ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
@pytest.mark.parametrize('device', [
'cpu',
pytest.param(
'cuda',
marks=pytest.mark.skipif(
not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
])
def test_box_iou_quadri_iof_cuda(self, device):
from mmcv.ops import box_iou_quadri
np_boxes1 = np.asarray([[1.0, 1.0, 3.0, 4.0, 4.0, 4.0, 4.0, 1.0],
[2.0, 2.0, 3.0, 4.0, 4.0, 2.0, 3.0, 1.0],
[7.0, 7.0, 8.0, 8.0, 9.0, 7.0, 8.0, 6.0]],
dtype=np.float32)
np_boxes2 = np.asarray([[0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0],
[2.0, 1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 1.0],
[7.0, 6.0, 7.0, 8.0, 9.0, 8.0, 9.0, 6.0]],
dtype=np.float32)
np_expect_ious = np.asarray(
[[0.1111, 1.0000, 0.0000], [0.0000, 1.0000, 0.0000],
[0.0000, 0.0000, 1.0000]],
dtype=np.float32)
np_expect_ious_aligned = np.asarray([0.1111, 1.0000, 1.0000],
dtype=np.float32)
boxes1 = torch.from_numpy(np_boxes1).to(device)
boxes2 = torch.from_numpy(np_boxes2).to(device)
ious = box_iou_quadri(boxes1, boxes2, mode='iof')
assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
ious = box_iou_quadri(boxes1, boxes2, mode='iof', aligned=True)
assert np.allclose(
ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)