mmcv/tests/test_ops/test_cc_attention.py
Leojc 2a3d2d4a35
Reimplement cc_attention using pure pytorch (#1201)
* Reimplement cc_attention using pure pytorch

* fix: avoid BC-Breaking

* delete cc_attention related cpp and cuda files

* delete cc_attention related lines in pybind.cpp

* make out Tensor contiguous.

* remove unneeded lines.

* Update mmcv/ops/cc_attention.py

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update TestCrissCrossAttention

* passing pre-commit

* Update docstring of CrissCrossAttention

* Update docstring of CrissCrossAttention

* Update mmcv/ops/cc_attention.py

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* [docs]polish the docstring

* [Docs] Polish the docstring

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>
2021-09-09 21:53:45 +08:00

56 lines
1.5 KiB
Python

import numpy as np
import torch
import torch.nn as nn
class Loss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input, target):
input = input.view(-1)
target = target.view(-1)
return torch.mean(input - target)
class TestCrissCrossAttention(object):
def test_cc_attention(self):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
from mmcv.ops import CrissCrossAttention
loss_func = Loss()
input = np.fromfile(
'tests/data/for_ccattention/ccattention_input.bin',
dtype=np.float32)
output = np.fromfile(
'tests/data/for_ccattention/ccattention_output.bin',
dtype=np.float32)
input = input.reshape((1, 32, 45, 45))
output = output.reshape((1, 32, 45, 45))
label = torch.ones((1, 32, 45, 45))
input = torch.FloatTensor(input)
output = torch.FloatTensor(output)
input.requires_grad = True
shape = input.shape
channel = shape[1]
cca = CrissCrossAttention(channel)
cca.to(device)
input = input.to(device)
label = label.to(device)
cca.train()
test_output = cca(input)
test_loss = loss_func(test_output, label)
test_loss.backward()
test_output = test_output.detach().cpu().numpy()
output = output.numpy()
assert np.allclose(test_output, output)
assert test_output.shape == shape