mirror of https://github.com/open-mmlab/mmcv.git
71 lines
2.1 KiB
Python
71 lines
2.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mmcv
|
|
|
|
|
|
def test_quantize():
|
|
arr = np.random.randn(10, 10)
|
|
levels = 20
|
|
|
|
qarr = mmcv.quantize(arr, -1, 1, levels)
|
|
assert qarr.shape == arr.shape
|
|
assert qarr.dtype == np.dtype('int64')
|
|
for i in range(arr.shape[0]):
|
|
for j in range(arr.shape[1]):
|
|
ref = min(levels - 1,
|
|
int(np.floor(10 * (1 + max(min(arr[i, j], 1), -1)))))
|
|
assert qarr[i, j] == ref
|
|
|
|
qarr = mmcv.quantize(arr, -1, 1, 20, dtype=np.uint8)
|
|
assert qarr.shape == arr.shape
|
|
assert qarr.dtype == np.dtype('uint8')
|
|
|
|
with pytest.raises(ValueError):
|
|
mmcv.quantize(arr, -1, 1, levels=0)
|
|
with pytest.raises(ValueError):
|
|
mmcv.quantize(arr, -1, 1, levels=10.0)
|
|
with pytest.raises(ValueError):
|
|
mmcv.quantize(arr, 2, 1, levels)
|
|
|
|
|
|
def test_dequantize():
|
|
levels = 20
|
|
qarr = np.random.randint(levels, size=(10, 10))
|
|
|
|
arr = mmcv.dequantize(qarr, -1, 1, levels)
|
|
assert arr.shape == qarr.shape
|
|
assert arr.dtype == np.dtype('float64')
|
|
for i in range(qarr.shape[0]):
|
|
for j in range(qarr.shape[1]):
|
|
assert arr[i, j] == (qarr[i, j] + 0.5) / 10 - 1
|
|
|
|
arr = mmcv.dequantize(qarr, -1, 1, levels, dtype=np.float32)
|
|
assert arr.shape == qarr.shape
|
|
assert arr.dtype == np.dtype('float32')
|
|
|
|
with pytest.raises(ValueError):
|
|
mmcv.dequantize(arr, -1, 1, levels=0)
|
|
with pytest.raises(ValueError):
|
|
mmcv.dequantize(arr, -1, 1, levels=10.0)
|
|
with pytest.raises(ValueError):
|
|
mmcv.dequantize(arr, 2, 1, levels)
|
|
|
|
|
|
def test_joint():
|
|
arr = np.random.randn(100, 100)
|
|
levels = 1000
|
|
qarr = mmcv.quantize(arr, -1, 1, levels)
|
|
recover = mmcv.dequantize(qarr, -1, 1, levels)
|
|
assert np.abs(recover[arr < -1] + 0.999).max() < 1e-6
|
|
assert np.abs(recover[arr > 1] - 0.999).max() < 1e-6
|
|
assert np.abs((recover - arr)[(arr >= -1) & (arr <= 1)]).max() <= 1e-3
|
|
|
|
arr = np.clip(np.random.randn(100) / 1000, -0.01, 0.01)
|
|
levels = 99
|
|
qarr = mmcv.quantize(arr, -1, 1, levels)
|
|
recover = mmcv.dequantize(qarr, -1, 1, levels)
|
|
assert np.all(recover == 0)
|