mirror of https://github.com/open-mmlab/mmcv.git
415 lines
17 KiB
Python
415 lines
17 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import pytest
|
|
from numpy.testing import assert_array_equal
|
|
|
|
import mmcv
|
|
|
|
|
|
class TestPhotometric:
|
|
|
|
@classmethod
|
|
def setup_class(cls):
|
|
# the test img resolution is 400x300
|
|
cls.img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
|
|
cls.img = cv2.imread(cls.img_path)
|
|
cls.mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
|
|
cls.std = np.array([58.395, 57.12, 57.375], dtype=np.float32)
|
|
|
|
def test_imnormalize(self):
|
|
rgb_img = self.img[:, :, ::-1]
|
|
baseline = (rgb_img - self.mean) / self.std
|
|
img = mmcv.imnormalize(self.img, self.mean, self.std)
|
|
assert np.allclose(img, baseline)
|
|
assert id(img) != id(self.img)
|
|
img = mmcv.imnormalize(rgb_img, self.mean, self.std, to_rgb=False)
|
|
assert np.allclose(img, baseline)
|
|
assert id(img) != id(rgb_img)
|
|
|
|
def test_imnormalize_(self):
|
|
img_for_normalize = np.float32(self.img)
|
|
rgb_img_for_normalize = np.float32(self.img[:, :, ::-1])
|
|
baseline = (rgb_img_for_normalize - self.mean) / self.std
|
|
img = mmcv.imnormalize_(img_for_normalize, self.mean, self.std)
|
|
assert np.allclose(img_for_normalize, baseline)
|
|
assert id(img) == id(img_for_normalize)
|
|
img = mmcv.imnormalize_(
|
|
rgb_img_for_normalize, self.mean, self.std, to_rgb=False)
|
|
assert np.allclose(img, baseline)
|
|
assert id(img) == id(rgb_img_for_normalize)
|
|
|
|
def test_imdenormalize(self):
|
|
norm_img = (self.img[:, :, ::-1] - self.mean) / self.std
|
|
rgb_baseline = (norm_img * self.std + self.mean)
|
|
bgr_baseline = rgb_baseline[:, :, ::-1]
|
|
img = mmcv.imdenormalize(norm_img, self.mean, self.std)
|
|
assert np.allclose(img, bgr_baseline)
|
|
img = mmcv.imdenormalize(norm_img, self.mean, self.std, to_bgr=False)
|
|
assert np.allclose(img, rgb_baseline)
|
|
|
|
def test_iminvert(self):
|
|
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
|
|
dtype=np.uint8)
|
|
img_r = np.array([[255, 127, 0], [254, 128, 1], [253, 126, 2]],
|
|
dtype=np.uint8)
|
|
assert_array_equal(mmcv.iminvert(img), img_r)
|
|
|
|
def test_solarize(self):
|
|
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
|
|
dtype=np.uint8)
|
|
img_r = np.array([[0, 127, 0], [1, 127, 1], [2, 126, 2]],
|
|
dtype=np.uint8)
|
|
assert_array_equal(mmcv.solarize(img), img_r)
|
|
img_r = np.array([[0, 127, 0], [1, 128, 1], [2, 126, 2]],
|
|
dtype=np.uint8)
|
|
assert_array_equal(mmcv.solarize(img, 100), img_r)
|
|
|
|
def test_posterize(self):
|
|
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
|
|
dtype=np.uint8)
|
|
img_r = np.array([[0, 128, 128], [0, 0, 128], [0, 128, 128]],
|
|
dtype=np.uint8)
|
|
assert_array_equal(mmcv.posterize(img, 1), img_r)
|
|
img_r = np.array([[0, 128, 224], [0, 96, 224], [0, 128, 224]],
|
|
dtype=np.uint8)
|
|
assert_array_equal(mmcv.posterize(img, 3), img_r)
|
|
|
|
def test_adjust_color(self):
|
|
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
|
|
dtype=np.uint8)
|
|
img = np.stack([img, img, img], axis=-1)
|
|
assert_array_equal(mmcv.adjust_color(img), img)
|
|
img_gray = mmcv.bgr2gray(img)
|
|
img_r = np.stack([img_gray, img_gray, img_gray], axis=-1)
|
|
assert_array_equal(mmcv.adjust_color(img, 0), img_r)
|
|
assert_array_equal(mmcv.adjust_color(img, 0, 1), img_r)
|
|
assert_array_equal(
|
|
mmcv.adjust_color(img, 0.5, 0.5),
|
|
np.round(np.clip((img * 0.5 + img_r * 0.5), 0,
|
|
255)).astype(img.dtype))
|
|
assert_array_equal(
|
|
mmcv.adjust_color(img, 1, 1.5),
|
|
np.round(np.clip(img * 1 + img_r * 1.5, 0, 255)).astype(img.dtype))
|
|
assert_array_equal(
|
|
mmcv.adjust_color(img, 0.8, -0.6, gamma=2),
|
|
np.round(np.clip(img * 0.8 - 0.6 * img_r + 2, 0,
|
|
255)).astype(img.dtype))
|
|
assert_array_equal(
|
|
mmcv.adjust_color(img, 0.8, -0.6, gamma=-0.6),
|
|
np.round(np.clip(img * 0.8 - 0.6 * img_r - 0.6, 0,
|
|
255)).astype(img.dtype))
|
|
|
|
# test float type of image
|
|
img = img.astype(np.float32)
|
|
assert_array_equal(
|
|
np.round(mmcv.adjust_color(img, 0.8, -0.6, gamma=-0.6)),
|
|
np.round(np.clip(img * 0.8 - 0.6 * img_r - 0.6, 0, 255)))
|
|
|
|
def test_imequalize(self, nb_rand_test=100):
|
|
|
|
def _imequalize(img):
|
|
# equalize the image using PIL.ImageOps.equalize
|
|
from PIL import Image, ImageOps
|
|
img = Image.fromarray(img)
|
|
equalized_img = np.asarray(ImageOps.equalize(img))
|
|
return equalized_img
|
|
|
|
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
|
|
dtype=np.uint8)
|
|
img = np.stack([img, img, img], axis=-1)
|
|
equalized_img = mmcv.imequalize(img)
|
|
assert_array_equal(equalized_img, _imequalize(img))
|
|
|
|
# test equalize with case step=0
|
|
img = np.array([[0, 0, 0], [120, 120, 120], [255, 255, 255]],
|
|
dtype=np.uint8)
|
|
img = np.stack([img, img, img], axis=-1)
|
|
assert_array_equal(mmcv.imequalize(img), img)
|
|
|
|
# test equalize with randomly sampled image.
|
|
for _ in range(nb_rand_test):
|
|
img = np.clip(np.random.normal(0, 1, (256, 256, 3)) * 260, 0,
|
|
255).astype(np.uint8)
|
|
equalized_img = mmcv.imequalize(img)
|
|
assert_array_equal(equalized_img, _imequalize(img))
|
|
|
|
def test_adjust_brightness(self, nb_rand_test=100):
|
|
|
|
def _adjust_brightness(img, factor):
|
|
# adjust the brightness of image using
|
|
# PIL.ImageEnhance.Brightness
|
|
from PIL import Image
|
|
from PIL.ImageEnhance import Brightness
|
|
img = Image.fromarray(img)
|
|
brightened_img = Brightness(img).enhance(factor)
|
|
return np.asarray(brightened_img)
|
|
|
|
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
|
|
dtype=np.uint8)
|
|
img = np.stack([img, img, img], axis=-1)
|
|
# test case with factor 1.0
|
|
assert_array_equal(mmcv.adjust_brightness(img, 1.), img)
|
|
# test case with factor 0.0
|
|
assert_array_equal(mmcv.adjust_brightness(img, 0.), np.zeros_like(img))
|
|
# test adjust_brightness with randomly sampled images and factors.
|
|
for _ in range(nb_rand_test):
|
|
img = np.clip(
|
|
np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0,
|
|
255).astype(np.uint8)
|
|
factor = np.random.uniform() + np.random.choice([0, 1])
|
|
np.testing.assert_allclose(
|
|
mmcv.adjust_brightness(img, factor).astype(np.int32),
|
|
_adjust_brightness(img, factor).astype(np.int32),
|
|
rtol=0,
|
|
atol=1)
|
|
|
|
def test_adjust_contrast(self, nb_rand_test=100):
|
|
|
|
def _adjust_contrast(img, factor):
|
|
from PIL import Image
|
|
from PIL.ImageEnhance import Contrast
|
|
|
|
# Image.fromarray defaultly supports RGB, not BGR.
|
|
# convert from BGR to RGB
|
|
img = Image.fromarray(img[..., ::-1], mode='RGB')
|
|
contrasted_img = Contrast(img).enhance(factor)
|
|
# convert from RGB to BGR
|
|
return np.asarray(contrasted_img)[..., ::-1]
|
|
|
|
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
|
|
dtype=np.uint8)
|
|
img = np.stack([img, img, img], axis=-1)
|
|
# test case with factor 1.0
|
|
assert_array_equal(mmcv.adjust_contrast(img, 1.), img)
|
|
# test case with factor 0.0
|
|
assert_array_equal(
|
|
mmcv.adjust_contrast(img, 0.), _adjust_contrast(img, 0.))
|
|
# test adjust_contrast with randomly sampled images and factors.
|
|
for _ in range(nb_rand_test):
|
|
img = np.clip(
|
|
np.random.uniform(0, 1, (1200, 1000, 3)) * 260, 0,
|
|
255).astype(np.uint8)
|
|
factor = np.random.uniform() + np.random.choice([0, 1])
|
|
# Note the gap (less_equal 1) between PIL.ImageEnhance.Contrast
|
|
# and mmcv.adjust_contrast comes from the gap that converts from
|
|
# a color image to gray image using mmcv or PIL.
|
|
np.testing.assert_allclose(
|
|
mmcv.adjust_contrast(img, factor).astype(np.int32),
|
|
_adjust_contrast(img, factor).astype(np.int32),
|
|
rtol=0,
|
|
atol=1)
|
|
|
|
def test_auto_contrast(self, nb_rand_test=100):
|
|
|
|
def _auto_contrast(img, cutoff=0):
|
|
from PIL import Image
|
|
from PIL.ImageOps import autocontrast
|
|
|
|
# Image.fromarray defaultly supports RGB, not BGR.
|
|
# convert from BGR to RGB
|
|
img = Image.fromarray(img[..., ::-1], mode='RGB')
|
|
contrasted_img = autocontrast(img, cutoff)
|
|
# convert from RGB to BGR
|
|
return np.asarray(contrasted_img)[..., ::-1]
|
|
|
|
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
|
|
dtype=np.uint8)
|
|
img = np.stack([img, img, img], axis=-1)
|
|
|
|
# test case without cut-off
|
|
assert_array_equal(mmcv.auto_contrast(img), _auto_contrast(img))
|
|
# test case with cut-off as int
|
|
assert_array_equal(
|
|
mmcv.auto_contrast(img, 10), _auto_contrast(img, 10))
|
|
# test case with cut-off as float
|
|
assert_array_equal(
|
|
mmcv.auto_contrast(img, 12.5), _auto_contrast(img, 12.5))
|
|
# test case with cut-off as tuple
|
|
assert_array_equal(
|
|
mmcv.auto_contrast(img, (10, 10)), _auto_contrast(img, 10))
|
|
# test case with cut-off with sum over 100
|
|
assert_array_equal(
|
|
mmcv.auto_contrast(img, 60), _auto_contrast(img, 60))
|
|
|
|
# test auto_contrast with randomly sampled images and factors.
|
|
for _ in range(nb_rand_test):
|
|
img = np.clip(
|
|
np.random.uniform(0, 1, (1200, 1000, 3)) * 260, 0,
|
|
255).astype(np.uint8)
|
|
# cut-offs are not set as tuple since in `build.yml`, pillow 6.2.2
|
|
# is installed, which does not support setting low cut-off and high
|
|
# cut-off differently.
|
|
# With pillow above 8.0.0, cutoff can be set as tuple
|
|
cutoff = np.random.rand() * 100
|
|
assert_array_equal(
|
|
mmcv.auto_contrast(img, cutoff), _auto_contrast(img, cutoff))
|
|
|
|
def test_adjust_sharpness(self, nb_rand_test=100):
|
|
|
|
def _adjust_sharpness(img, factor):
|
|
# adjust the sharpness of image using
|
|
# PIL.ImageEnhance.Sharpness
|
|
from PIL import Image
|
|
from PIL.ImageEnhance import Sharpness
|
|
img = Image.fromarray(img)
|
|
sharpened_img = Sharpness(img).enhance(factor)
|
|
return np.asarray(sharpened_img)
|
|
|
|
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
|
|
dtype=np.uint8)
|
|
img = np.stack([img, img, img], axis=-1)
|
|
|
|
# test case with invalid type of kernel
|
|
with pytest.raises(AssertionError):
|
|
mmcv.adjust_sharpness(img, 1., kernel=1.)
|
|
# test case with invalid shape of kernel
|
|
kernel = np.ones((3, 3, 3))
|
|
with pytest.raises(AssertionError):
|
|
mmcv.adjust_sharpness(img, 1., kernel=kernel)
|
|
# test case with all-zero kernel, factor 0.0
|
|
kernel = np.zeros((3, 3))
|
|
assert_array_equal(
|
|
mmcv.adjust_sharpness(img, 0., kernel=kernel), np.zeros_like(img))
|
|
|
|
# test case with factor 1.0
|
|
assert_array_equal(mmcv.adjust_sharpness(img, 1.), img)
|
|
# test adjust_sharpness with randomly sampled images and factors.
|
|
for _ in range(nb_rand_test):
|
|
img = np.clip(
|
|
np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0,
|
|
255).astype(np.uint8)
|
|
factor = np.random.uniform()
|
|
# Note the gap between PIL.ImageEnhance.Sharpness and
|
|
# mmcv.adjust_sharpness mainly comes from the difference ways of
|
|
# handling img edges when applying filters
|
|
np.testing.assert_allclose(
|
|
mmcv.adjust_sharpness(img, factor).astype(np.int32)[1:-1,
|
|
1:-1],
|
|
_adjust_sharpness(img, factor).astype(np.int32)[1:-1, 1:-1],
|
|
rtol=0,
|
|
atol=1)
|
|
|
|
def test_adjust_lighting(self):
|
|
img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
|
|
img = np.stack([img, img, img], axis=-1)
|
|
|
|
# eigval and eigvec must be np.ndarray
|
|
with pytest.raises(AssertionError):
|
|
mmcv.adjust_lighting(img, 1, np.ones((3, 1)))
|
|
with pytest.raises(AssertionError):
|
|
mmcv.adjust_lighting(img, np.array([1]), (1, 1, 1))
|
|
# we must have the same number of eigval and eigvec
|
|
with pytest.raises(AssertionError):
|
|
mmcv.adjust_lighting(img, np.array([1]), np.eye(2))
|
|
with pytest.raises(AssertionError):
|
|
mmcv.adjust_lighting(img, np.array([1]), np.array([1]))
|
|
|
|
img_adjusted = mmcv.adjust_lighting(
|
|
img,
|
|
np.random.normal(0, 1, 2),
|
|
np.random.normal(0, 1, (3, 2)),
|
|
alphastd=0.)
|
|
assert_array_equal(img_adjusted, img)
|
|
|
|
def test_lut_transform(self):
|
|
lut_table = np.array(list(range(256)))
|
|
|
|
# test assertion image values should between 0 and 255.
|
|
with pytest.raises(AssertionError):
|
|
mmcv.lut_transform(np.array([256]), lut_table)
|
|
with pytest.raises(AssertionError):
|
|
mmcv.lut_transform(np.array([-1]), lut_table)
|
|
|
|
# test assertion lut_table should be ndarray with shape (256, )
|
|
with pytest.raises(AssertionError):
|
|
mmcv.lut_transform(np.array([0]), list(range(256)))
|
|
with pytest.raises(AssertionError):
|
|
mmcv.lut_transform(np.array([1]), np.array(list(range(257))))
|
|
|
|
img = mmcv.lut_transform(self.img, lut_table)
|
|
baseline = cv2.LUT(self.img, lut_table)
|
|
assert np.allclose(img, baseline)
|
|
|
|
input_img = np.array(
|
|
[[[0, 128, 255], [255, 128, 0]], [[0, 128, 255], [255, 128, 0]]],
|
|
dtype=float)
|
|
img = mmcv.lut_transform(input_img, lut_table)
|
|
baseline = cv2.LUT(np.array(input_img, dtype=np.uint8), lut_table)
|
|
assert np.allclose(img, baseline)
|
|
|
|
input_img = np.random.randint(0, 256, size=(7, 8, 9, 10, 11))
|
|
img = mmcv.lut_transform(input_img, lut_table)
|
|
baseline = cv2.LUT(np.array(input_img, dtype=np.uint8), lut_table)
|
|
assert np.allclose(img, baseline)
|
|
|
|
def test_clahe(self):
|
|
|
|
def _clahe(img, clip_limit=40.0, tile_grid_size=(8, 8)):
|
|
clahe = cv2.createCLAHE(clip_limit, tile_grid_size)
|
|
return clahe.apply(np.array(img, dtype=np.uint8))
|
|
|
|
# test assertion image should have the right shape
|
|
with pytest.raises(AssertionError):
|
|
mmcv.clahe(self.img)
|
|
|
|
# test assertion tile_grid_size should be a tuple with 2 integers
|
|
with pytest.raises(AssertionError):
|
|
mmcv.clahe(self.img[:, :, 0], tile_grid_size=(8.0, 8.0))
|
|
with pytest.raises(AssertionError):
|
|
mmcv.clahe(self.img[:, :, 0], tile_grid_size=(8, 8, 8))
|
|
with pytest.raises(AssertionError):
|
|
mmcv.clahe(self.img[:, :, 0], tile_grid_size=[8, 8])
|
|
|
|
# test with different channels
|
|
for i in range(self.img.shape[-1]):
|
|
img = mmcv.clahe(self.img[:, :, i])
|
|
img_std = _clahe(self.img[:, :, i])
|
|
assert np.allclose(img, img_std)
|
|
assert id(img) != id(self.img[:, :, i])
|
|
assert id(img_std) != id(self.img[:, :, i])
|
|
|
|
# test case with clip_limit=1.2
|
|
for i in range(self.img.shape[-1]):
|
|
img = mmcv.clahe(self.img[:, :, i], 1.2)
|
|
img_std = _clahe(self.img[:, :, i], 1.2)
|
|
assert np.allclose(img, img_std)
|
|
assert id(img) != id(self.img[:, :, i])
|
|
assert id(img_std) != id(self.img[:, :, i])
|
|
|
|
def test_adjust_hue(self):
|
|
from PIL import Image
|
|
|
|
def _adjust_hue(img, hue_factor):
|
|
input_mode = img.mode
|
|
if input_mode in {'L', '1', 'I', 'F'}:
|
|
return img
|
|
h, s, v = img.convert('HSV').split()
|
|
np_h = np.array(h, dtype=np.uint8)
|
|
# uint8 addition take cares of rotation across boundaries
|
|
with np.errstate(over='ignore'):
|
|
np_h += np.uint8(hue_factor * 255)
|
|
h = Image.fromarray(np_h, 'L')
|
|
img = Image.merge('HSV', (h, s, v)).convert(input_mode)
|
|
return img
|
|
|
|
pil_img = Image.fromarray(self.img)
|
|
|
|
# test case with img is not ndarray
|
|
with pytest.raises(TypeError):
|
|
mmcv.adjust_hue(pil_img, hue_factor=0.0)
|
|
|
|
# test case with hue_factor > 0.5 or hue_factor < -0.5
|
|
with pytest.raises(ValueError):
|
|
mmcv.adjust_hue(self.img, hue_factor=-0.6)
|
|
with pytest.raises(ValueError):
|
|
mmcv.adjust_hue(self.img, hue_factor=0.6)
|
|
|
|
for i in np.arange(-0.5, 0.5, 0.2):
|
|
pil_res = _adjust_hue(pil_img, hue_factor=i)
|
|
pil_res = np.array(pil_res)
|
|
cv2_res = mmcv.adjust_hue(self.img, hue_factor=i)
|
|
assert np.allclose(pil_res, cv2_res, atol=10.0)
|