mirror of https://github.com/open-mmlab/mmcv.git
100 lines
3.1 KiB
Python
100 lines
3.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class Loss(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, input, target):
|
|
input = input.view(-1)
|
|
target = target.view(-1)
|
|
return torch.mean(input - target)
|
|
|
|
|
|
class TestPSAMask:
|
|
|
|
def test_psa_mask_collect(self):
|
|
if not torch.cuda.is_available():
|
|
return
|
|
from mmcv.ops import PSAMask
|
|
test_loss = Loss()
|
|
|
|
input = np.fromfile(
|
|
'tests/data/for_psa_mask/psa_input.bin', dtype=np.float32)
|
|
output_collect = np.fromfile(
|
|
'tests/data/for_psa_mask/psa_output_collect.bin', dtype=np.float32)
|
|
|
|
input = input.reshape((4, 16, 8, 8))
|
|
output_collect = output_collect.reshape((4, 64, 8, 8))
|
|
label = torch.ones((4, 64, 8, 8))
|
|
|
|
input = torch.FloatTensor(input)
|
|
input.requires_grad = True
|
|
|
|
psamask_collect = PSAMask('collect', (4, 4))
|
|
|
|
# test collect cpu
|
|
test_output = psamask_collect(input)
|
|
loss = test_loss(test_output, label)
|
|
loss.backward()
|
|
test_output = test_output.detach().numpy()
|
|
assert np.allclose(test_output, output_collect)
|
|
assert test_output.shape == output_collect.shape
|
|
|
|
psamask_collect.cuda()
|
|
input = input.cuda()
|
|
label = label.cuda()
|
|
|
|
# test collect cuda
|
|
test_output = psamask_collect(input)
|
|
loss = test_loss(test_output, label)
|
|
loss.backward()
|
|
test_output = test_output.detach().cpu().numpy()
|
|
assert np.allclose(test_output, output_collect)
|
|
assert test_output.shape == output_collect.shape
|
|
|
|
def test_psa_mask_distribute(self):
|
|
if not torch.cuda.is_available():
|
|
return
|
|
from mmcv.ops import PSAMask
|
|
test_loss = Loss()
|
|
|
|
input = np.fromfile(
|
|
'tests/data/for_psa_mask/psa_input.bin', dtype=np.float32)
|
|
output_distribute = np.fromfile(
|
|
'tests/data/for_psa_mask/psa_output_distribute.bin',
|
|
dtype=np.float32)
|
|
|
|
input = input.reshape((4, 16, 8, 8))
|
|
output_distribute = output_distribute.reshape((4, 64, 8, 8))
|
|
label = torch.ones((4, 64, 8, 8))
|
|
|
|
input = torch.FloatTensor(input)
|
|
input.requires_grad = True
|
|
|
|
psamask_distribute = PSAMask('distribute', (4, 4))
|
|
|
|
# test distribute cpu
|
|
test_output = psamask_distribute(input)
|
|
loss = test_loss(test_output, label)
|
|
loss.backward()
|
|
test_output = test_output.detach().numpy()
|
|
assert np.allclose(test_output, output_distribute)
|
|
assert test_output.shape == output_distribute.shape
|
|
|
|
psamask_distribute.cuda()
|
|
input = input.cuda()
|
|
label = label.cuda()
|
|
|
|
# test distribute cuda
|
|
test_output = psamask_distribute(input)
|
|
loss = test_loss(test_output, label)
|
|
loss.backward()
|
|
test_output = test_output.detach().cpu().numpy()
|
|
assert np.allclose(test_output, output_distribute)
|
|
assert test_output.shape == output_distribute.shape
|