mirror of https://github.com/open-mmlab/mmcv.git
809 lines
24 KiB
Python
809 lines
24 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os
|
|
from functools import partial
|
|
from typing import Callable
|
|
|
|
import numpy as np
|
|
import onnx
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
try:
|
|
from mmcv.tensorrt import (TRTWrapper, is_tensorrt_plugin_loaded, onnx2trt,
|
|
save_trt_engine)
|
|
except ImportError:
|
|
pytest.skip(
|
|
'TensorRT should be installed from source.', allow_module_level=True)
|
|
|
|
if not torch.cuda.is_available():
|
|
pytest.skip(
|
|
'CUDA is required for this test module', allow_module_level=True)
|
|
|
|
if not is_tensorrt_plugin_loaded():
|
|
pytest.skip(
|
|
'Test requires to complie TensorRT plugins in mmcv',
|
|
allow_module_level=True)
|
|
|
|
|
|
class WrapFunction(nn.Module):
|
|
|
|
def __init__(self, wrapped_function):
|
|
super().__init__()
|
|
self.wrapped_function = wrapped_function
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return self.wrapped_function(*args, **kwargs)
|
|
|
|
|
|
onnx_file = 'tmp.onnx'
|
|
trt_file = 'tmp.engine'
|
|
|
|
|
|
def test_roialign():
|
|
try:
|
|
from mmcv.ops import RoIAlign
|
|
except (ImportError, ModuleNotFoundError):
|
|
pytest.skip('test requires compilation')
|
|
|
|
# trt config
|
|
fp16_mode = False
|
|
max_workspace_size = 1 << 30
|
|
|
|
# roi align config
|
|
pool_h = 2
|
|
pool_w = 2
|
|
spatial_scale = 1.0
|
|
sampling_ratio = 2
|
|
|
|
inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
|
|
([[[[1., 2.], [3., 4.]], [[4., 3.],
|
|
[2., 1.]]]], [[0., 0., 0., 1., 1.]]),
|
|
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
|
|
[11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
|
|
|
|
wrapped_model = RoIAlign((pool_w, pool_h), spatial_scale, sampling_ratio,
|
|
'avg', True).cuda()
|
|
for case in inputs:
|
|
np_input = np.array(case[0], dtype=np.float32)
|
|
np_rois = np.array(case[1], dtype=np.float32)
|
|
input = torch.from_numpy(np_input).cuda()
|
|
rois = torch.from_numpy(np_rois).cuda()
|
|
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
wrapped_model, (input, rois),
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=True,
|
|
input_names=['input', 'rois'],
|
|
output_names=['roi_feat'],
|
|
opset_version=11)
|
|
onnx_model = onnx.load(onnx_file)
|
|
|
|
# create trt engine and wrapper
|
|
opt_shape_dict = {
|
|
'input': [list(input.shape),
|
|
list(input.shape),
|
|
list(input.shape)],
|
|
'rois': [list(rois.shape),
|
|
list(rois.shape),
|
|
list(rois.shape)]
|
|
}
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
save_trt_engine(trt_engine, trt_file)
|
|
trt_model = TRTWrapper(trt_file, ['input', 'rois'], ['roi_feat'])
|
|
|
|
with torch.no_grad():
|
|
trt_outputs = trt_model({'input': input, 'rois': rois})
|
|
trt_roi_feat = trt_outputs['roi_feat']
|
|
|
|
# compute pytorch_output
|
|
with torch.no_grad():
|
|
pytorch_roi_feat = wrapped_model(input, rois)
|
|
|
|
# allclose
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
assert torch.allclose(pytorch_roi_feat, trt_roi_feat)
|
|
|
|
|
|
def test_nms():
|
|
try:
|
|
import mmcv
|
|
from mmcv.ops import nms
|
|
except (ImportError, ModuleNotFoundError):
|
|
pytest.skip('test requires compilation')
|
|
os.environ['ONNX_BACKEND'] = 'MMCVTensorRT'
|
|
# trt config
|
|
fp16_mode = False
|
|
max_workspace_size = 1 << 30
|
|
data = mmcv.load('./tests/data/batched_nms_data.pkl')
|
|
boxes = torch.from_numpy(data['boxes']).cuda()
|
|
scores = torch.from_numpy(data['scores']).cuda()
|
|
nms = partial(
|
|
nms, iou_threshold=0.7, offset=0, score_threshold=0.1, max_num=100)
|
|
wrapped_model = WrapFunction(nms)
|
|
wrapped_model.cpu().eval()
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
wrapped_model, (boxes.detach().cpu(), scores.detach().cpu()),
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=True,
|
|
input_names=['boxes', 'scores'],
|
|
output_names=['dets', 'inds'],
|
|
opset_version=11)
|
|
onnx_model = onnx.load(onnx_file)
|
|
|
|
# create trt engine and wrapper
|
|
opt_shape_dict = {
|
|
'boxes': [list(boxes.shape),
|
|
list(boxes.shape),
|
|
list(boxes.shape)],
|
|
'scores': [list(scores.shape),
|
|
list(scores.shape),
|
|
list(scores.shape)]
|
|
}
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
save_trt_engine(trt_engine, trt_file)
|
|
trt_model = TRTWrapper(trt_file, ['boxes', 'scores'], ['dets', 'inds'])
|
|
|
|
with torch.no_grad():
|
|
trt_outputs = trt_model({'boxes': boxes, 'scores': scores})
|
|
trt_dets = trt_outputs['dets']
|
|
trt_inds = trt_outputs['inds']
|
|
trt_inds = trt_inds.long()
|
|
|
|
# compute pytorch_output
|
|
with torch.no_grad():
|
|
pytorch_outputs = wrapped_model(boxes, scores)
|
|
pytorch_dets, pytorch_inds = pytorch_outputs
|
|
|
|
# allclose
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
num_boxes = pytorch_dets.shape[0]
|
|
trt_dets = trt_dets[:num_boxes, ...]
|
|
trt_inds = trt_inds[:num_boxes]
|
|
trt_scores = trt_dets[:, 4]
|
|
pytorch_scores = pytorch_dets[:, 4]
|
|
os.environ.pop('ONNX_BACKEND')
|
|
assert torch.allclose(pytorch_scores, trt_scores, atol=1e-3)
|
|
assert torch.equal(pytorch_inds, trt_inds)
|
|
|
|
|
|
def test_batched_nms():
|
|
try:
|
|
import mmcv
|
|
from mmcv.ops import batched_nms
|
|
except (ImportError, ModuleNotFoundError):
|
|
pytest.skip('test requires compilation')
|
|
|
|
# trt config
|
|
os.environ['ONNX_BACKEND'] = 'MMCVTensorRT'
|
|
fp16_mode = False
|
|
max_workspace_size = 1 << 30
|
|
data = mmcv.load('./tests/data/batched_nms_data.pkl')
|
|
nms_cfg = dict(type='nms', iou_threshold=0.7, score_threshold=0.1)
|
|
boxes = torch.from_numpy(data['boxes']).cuda()
|
|
scores = torch.from_numpy(data['scores']).cuda()
|
|
idxs = torch.from_numpy(data['idxs']).cuda()
|
|
class_agnostic = False
|
|
|
|
nms = partial(batched_nms, nms_cfg=nms_cfg, class_agnostic=class_agnostic)
|
|
wrapped_model = WrapFunction(nms)
|
|
wrapped_model.cpu().eval()
|
|
input_data = (boxes.detach().cpu(), scores.detach().cpu(),
|
|
idxs.detach().cpu())
|
|
input_names = ['boxes', 'scores', 'idxs']
|
|
output_names = ['dets', 'inds']
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
wrapped_model,
|
|
input_data,
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=True,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
opset_version=11)
|
|
onnx_model = onnx.load(onnx_file)
|
|
# create trt engine and wrapper
|
|
opt_shape_dict = {
|
|
'boxes': [list(boxes.shape),
|
|
list(boxes.shape),
|
|
list(boxes.shape)],
|
|
'scores': [list(scores.shape),
|
|
list(scores.shape),
|
|
list(scores.shape)],
|
|
'idxs': [list(idxs.shape),
|
|
list(idxs.shape),
|
|
list(idxs.shape)]
|
|
}
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
save_trt_engine(trt_engine, trt_file)
|
|
trt_model = TRTWrapper(trt_file, input_names, output_names)
|
|
|
|
with torch.no_grad():
|
|
trt_outputs = trt_model({
|
|
'boxes': boxes,
|
|
'scores': scores,
|
|
'idxs': idxs
|
|
})
|
|
trt_dets = trt_outputs['dets']
|
|
trt_inds = trt_outputs['inds']
|
|
trt_inds = trt_inds.long()
|
|
|
|
# compute pytorch_output
|
|
with torch.no_grad():
|
|
pytorch_outputs = wrapped_model(boxes, scores, idxs)
|
|
pytorch_dets, pytorch_inds = pytorch_outputs
|
|
# allclose
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
num_boxes = pytorch_dets.shape[0]
|
|
trt_dets = trt_dets[:num_boxes, ...]
|
|
trt_inds = trt_inds[:num_boxes]
|
|
trt_scores = trt_dets[:, 4]
|
|
pytorch_scores = pytorch_dets[:, 4]
|
|
|
|
os.environ.pop('ONNX_BACKEND')
|
|
assert torch.allclose(pytorch_scores, trt_scores)
|
|
assert torch.equal(pytorch_inds, trt_inds)
|
|
|
|
|
|
def test_scatternd():
|
|
|
|
def func(data):
|
|
data[:, :-2] += 1
|
|
data[:2, :] -= 1
|
|
return data
|
|
|
|
data = torch.zeros(4, 4).cuda()
|
|
wrapped_model = WrapFunction(func).eval().cuda()
|
|
|
|
input_names = ['input']
|
|
output_names = ['output']
|
|
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
wrapped_model, (data.clone(), ),
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=True,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
opset_version=11)
|
|
|
|
onnx_model = onnx.load(onnx_file)
|
|
|
|
# create trt engine and wrapper
|
|
opt_shape_dict = {
|
|
'input': [list(data.shape),
|
|
list(data.shape),
|
|
list(data.shape)],
|
|
}
|
|
# trt config
|
|
fp16_mode = False
|
|
max_workspace_size = 1 << 30
|
|
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
|
|
save_trt_engine(trt_engine, trt_file)
|
|
trt_model = TRTWrapper(trt_file, input_names, output_names)
|
|
|
|
with torch.no_grad():
|
|
trt_outputs = trt_model({'input': data.clone()})
|
|
trt_results = trt_outputs['output']
|
|
|
|
# compute pytorch_output
|
|
with torch.no_grad():
|
|
pytorch_results = wrapped_model(data.clone())
|
|
|
|
# allclose
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
assert torch.allclose(pytorch_results, trt_results)
|
|
|
|
|
|
def test_deform_conv():
|
|
try:
|
|
from mmcv.ops import DeformConv2dPack
|
|
except (ImportError, ModuleNotFoundError):
|
|
pytest.skip('test requires compilation')
|
|
|
|
input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
|
|
offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
|
|
[[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
|
|
[[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
|
|
[[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
|
|
offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
|
|
deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]
|
|
|
|
c_in = 1
|
|
c_out = 1
|
|
x = torch.Tensor(input).cuda()
|
|
x.requires_grad = True
|
|
model = DeformConv2dPack(c_in, c_out, 2, stride=1, padding=0)
|
|
model.conv_offset.weight.data = torch.nn.Parameter(
|
|
torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
|
|
model.conv_offset.bias.data = torch.nn.Parameter(
|
|
torch.Tensor(offset_bias).reshape(8))
|
|
model.weight.data = torch.nn.Parameter(
|
|
torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
|
|
model.cuda().eval()
|
|
|
|
input_names = ['input']
|
|
output_names = ['output']
|
|
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
model, (x.clone(), ),
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=True,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
opset_version=11)
|
|
|
|
onnx_model = onnx.load(onnx_file)
|
|
|
|
# create trt engine and wrapper
|
|
opt_shape_dict = {
|
|
'input': [list(x.shape), list(x.shape),
|
|
list(x.shape)],
|
|
}
|
|
# trt config
|
|
fp16_mode = False
|
|
max_workspace_size = 1 << 30
|
|
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
|
|
save_trt_engine(trt_engine, trt_file)
|
|
trt_model = TRTWrapper(trt_file, input_names, output_names)
|
|
|
|
with torch.no_grad():
|
|
trt_outputs = trt_model({'input': x.clone()})
|
|
trt_results = trt_outputs['output']
|
|
|
|
# compute pytorch_output
|
|
with torch.no_grad():
|
|
pytorch_results = model(x.clone())
|
|
|
|
# allclose
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
assert torch.allclose(pytorch_results, trt_results)
|
|
|
|
|
|
@pytest.mark.parametrize('with_bias', [True, False])
|
|
def test_modulated_deform_conv(with_bias):
|
|
try:
|
|
from mmcv.ops import ModulatedDeformConv2dPack
|
|
except (ImportError, ModuleNotFoundError):
|
|
pytest.skip('test requires compilation')
|
|
|
|
input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
|
|
|
|
x = torch.Tensor(input).cuda()
|
|
model = ModulatedDeformConv2dPack(
|
|
1,
|
|
1,
|
|
kernel_size=(2, 2),
|
|
stride=1,
|
|
padding=1,
|
|
deform_groups=1,
|
|
bias=with_bias)
|
|
model.weight.data.fill_(1.)
|
|
model.type(torch.float32)
|
|
model = model.cuda().eval()
|
|
|
|
input_names = ['input']
|
|
output_names = ['output']
|
|
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
model, (x.clone(), ),
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=True,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
opset_version=11)
|
|
|
|
onnx_model = onnx.load(onnx_file)
|
|
|
|
# create trt engine and wrapper
|
|
opt_shape_dict = {
|
|
'input': [list(x.shape), list(x.shape),
|
|
list(x.shape)],
|
|
}
|
|
# trt config
|
|
fp16_mode = False
|
|
max_workspace_size = 1 << 30
|
|
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
|
|
save_trt_engine(trt_engine, trt_file)
|
|
trt_model = TRTWrapper(trt_file, input_names, output_names)
|
|
|
|
with torch.no_grad():
|
|
trt_outputs = trt_model({'input': x.clone()})
|
|
trt_results = trt_outputs['output']
|
|
|
|
# compute pytorch_output
|
|
with torch.no_grad():
|
|
pytorch_results = model(x.clone())
|
|
|
|
# allclose
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
torch.testing.assert_allclose(pytorch_results, trt_results)
|
|
|
|
|
|
@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
|
|
@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
|
|
@pytest.mark.parametrize('align_corners', [True, False])
|
|
def test_grid_sample(mode, padding_mode, align_corners):
|
|
from mmcv.onnx.symbolic import register_extra_symbolics
|
|
|
|
register_extra_symbolics(11)
|
|
|
|
input = torch.rand(1, 1, 10, 10).cuda()
|
|
grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
|
|
grid = F.affine_grid(grid, (1, 1, 15, 15)).type_as(input).cuda()
|
|
|
|
def func(input, grid):
|
|
return F.grid_sample(
|
|
input,
|
|
grid,
|
|
mode=mode,
|
|
padding_mode=padding_mode,
|
|
align_corners=align_corners)
|
|
|
|
wrapped_model = WrapFunction(func).eval().cuda()
|
|
|
|
input_names = ['input', 'grid']
|
|
output_names = ['output']
|
|
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
wrapped_model, (input.clone(), grid.clone()),
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=True,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
opset_version=11)
|
|
|
|
onnx_model = onnx.load(onnx_file)
|
|
|
|
# create trt engine and wrapper
|
|
opt_shape_dict = {
|
|
'input': [list(input.shape),
|
|
list(input.shape),
|
|
list(input.shape)],
|
|
'grid': [list(grid.shape),
|
|
list(grid.shape),
|
|
list(grid.shape)],
|
|
}
|
|
# trt config
|
|
fp16_mode = False
|
|
max_workspace_size = 1 << 30
|
|
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
|
|
save_trt_engine(trt_engine, trt_file)
|
|
trt_model = TRTWrapper(trt_file, input_names, output_names)
|
|
|
|
with torch.no_grad():
|
|
trt_outputs = trt_model({'input': input.clone(), 'grid': grid.clone()})
|
|
trt_results = trt_outputs['output']
|
|
|
|
# compute pytorch_output
|
|
with torch.no_grad():
|
|
pytorch_results = wrapped_model(input.clone(), grid.clone())
|
|
|
|
# allclose
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
assert torch.allclose(pytorch_results, trt_results)
|
|
|
|
|
|
@pytest.mark.parametrize('func', [torch.cummax, torch.cummin])
|
|
def test_cummin_cummax(func: Callable):
|
|
# Note generally `cummax` or `cummin` is exportable to ONNX
|
|
# as long as the pytorch version >= 1.5.0, since `torch.cummax`
|
|
# is only supported with torch >= 1.5.0.
|
|
# But when `cummax` or `cummin` serves as an intermediate component
|
|
# whose outputs is used as inputs for another modules, it's expected
|
|
# that pytorch version must be >= 1.7.0. Otherwise error appears like:
|
|
# `RuntimeError: tuple appears in op that does not forward tuples,
|
|
# unsupported 'kind: prim::PythonOp`.
|
|
from packaging import version
|
|
if version.parse(torch.__version__) < version.parse('1.7.0'):
|
|
pytest.skip('test_cummax_cummin should be ran with pytorch >= 1.7.0')
|
|
|
|
opset = 11
|
|
# register custom op `mmcv::cummax` and `mmcv::cummin`
|
|
from mmcv.onnx.symbolic import register_extra_symbolics
|
|
register_extra_symbolics(opset)
|
|
|
|
input_list = [
|
|
# arbitrary shape, e.g. 1-D, 2-D, 3-D, ...
|
|
torch.rand((2, 3, 4, 1, 5)).cuda(),
|
|
torch.rand(1).cuda()
|
|
]
|
|
|
|
input_names = ['input']
|
|
output_names = ['output', 'indices']
|
|
|
|
for input in input_list:
|
|
ndims = input.dim()
|
|
# valid dim range is [-ndims, ndims-1]
|
|
# test for all `dim` value which is valid
|
|
for dim in range(-ndims, ndims):
|
|
cummax_func = partial(func, dim=dim)
|
|
wrapped_model = WrapFunction(cummax_func).eval().cuda()
|
|
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
wrapped_model,
|
|
input,
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=False,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
opset_version=opset)
|
|
|
|
onnx_model = onnx.load(onnx_file)
|
|
|
|
# create trt engine and wrapper
|
|
opt_shape_dict = {
|
|
'input':
|
|
[list(input.shape),
|
|
list(input.shape),
|
|
list(input.shape)]
|
|
}
|
|
# trt config
|
|
fp16_mode = False
|
|
max_workspace_size = 1 << 30
|
|
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
|
|
# remove ONNX model after conversion
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
|
|
# save TensorRT model
|
|
save_trt_engine(trt_engine, trt_file)
|
|
|
|
# load and wrap TensorRT model
|
|
trt_model = TRTWrapper(trt_file)
|
|
|
|
# remove trt model after loading
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
|
|
# compute trt output
|
|
with torch.no_grad():
|
|
trt_results = trt_model({'input': input.contiguous().clone()})
|
|
trt_output = trt_results['output']
|
|
trt_indices = trt_results['indices']
|
|
|
|
# compute pytorch output
|
|
with torch.no_grad():
|
|
pytorch_results = wrapped_model(input.clone())
|
|
pytorch_output = pytorch_results[0]
|
|
pytorch_indices = pytorch_results[1]
|
|
|
|
torch.testing.assert_allclose(trt_output, pytorch_output)
|
|
torch.testing.assert_allclose(trt_indices, pytorch_indices)
|
|
|
|
|
|
@pytest.mark.parametrize('dynamic_export', [True, False])
|
|
@pytest.mark.parametrize('fp16_mode', [True, False])
|
|
def test_instance_norm(dynamic_export, fp16_mode):
|
|
|
|
n, c, h, w = 2, 3, 10, 10
|
|
data = torch.randn(n, c, h, w).cuda()
|
|
norm = nn.InstanceNorm2d(c, affine=True)
|
|
|
|
wrapped_model = WrapFunction(norm).eval().cuda()
|
|
|
|
input_names = ['input']
|
|
output_names = ['output']
|
|
dynamic_axes = None
|
|
if dynamic_export:
|
|
dynamic_axes = {
|
|
'input': {
|
|
0: 'n',
|
|
2: 'h',
|
|
3: 'w',
|
|
},
|
|
'output': {
|
|
0: 'n',
|
|
2: 'h',
|
|
3: 'w',
|
|
},
|
|
}
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
wrapped_model, (data.clone(), ),
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=True,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
dynamic_axes=dynamic_axes,
|
|
opset_version=11)
|
|
|
|
onnx_model = onnx.load(onnx_file)
|
|
|
|
# create trt engine and wrapper
|
|
if dynamic_export:
|
|
opt_shape_dict = {
|
|
'input':
|
|
[list(data.shape),
|
|
list(data.shape), [2 * n, c, 2 * h, 2 * w]],
|
|
}
|
|
else:
|
|
opt_shape_dict = {
|
|
'input': [list(data.shape),
|
|
list(data.shape),
|
|
list(data.shape)],
|
|
}
|
|
# trt config
|
|
max_workspace_size = 1 << 30
|
|
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
|
|
save_trt_engine(trt_engine, trt_file)
|
|
trt_model = TRTWrapper(trt_file, input_names, output_names)
|
|
|
|
with torch.no_grad():
|
|
trt_outputs = trt_model({'input': data.clone()})
|
|
trt_results = trt_outputs['output']
|
|
|
|
# compute pytorch_output
|
|
with torch.no_grad():
|
|
pytorch_results = wrapped_model(data.clone())
|
|
|
|
# allclose
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
assert torch.allclose(pytorch_results, trt_results)
|
|
|
|
|
|
@pytest.mark.parametrize('mode', ['top', 'bottom', 'left', 'right'])
|
|
def test_corner_pool(mode):
|
|
try:
|
|
from mmcv.ops import CornerPool
|
|
except (ImportError, ModuleNotFoundError):
|
|
pytest.skip('test requires compilation')
|
|
|
|
opset = 11
|
|
# register custom op `mmcv::MMCVCornerPool`
|
|
from mmcv.onnx.symbolic import register_extra_symbolics
|
|
register_extra_symbolics(opset)
|
|
|
|
# trt config
|
|
fp16_mode = False
|
|
max_workspace_size = 1 << 30
|
|
|
|
inputs = [
|
|
# (n, c, h, w)
|
|
torch.rand((2, 3, 5, 5)),
|
|
torch.rand((1, 2, 4, 6)),
|
|
torch.rand((2, 1, 3, 2)),
|
|
]
|
|
|
|
class CornerPoolWrapper(CornerPool):
|
|
|
|
def __init__(self, mode):
|
|
super().__init__(mode)
|
|
|
|
def forward(self, x):
|
|
# no use `torch.cummax`, instead `corner_pool` is used
|
|
# for various torch version
|
|
return self.corner_pool.apply(x)
|
|
|
|
wrapped_model = CornerPoolWrapper(mode).cuda()
|
|
for input in inputs:
|
|
input = input.cuda()
|
|
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
wrapped_model, (input, ),
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=True,
|
|
input_names=['input'],
|
|
output_names=['output'],
|
|
opset_version=opset)
|
|
onnx_model = onnx.load(onnx_file)
|
|
|
|
# create trt engine and wrapper
|
|
opt_shape_dict = {
|
|
'input': [list(input.shape),
|
|
list(input.shape),
|
|
list(input.shape)],
|
|
}
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
save_trt_engine(trt_engine, trt_file)
|
|
trt_model = TRTWrapper(trt_file, ['input'], ['output'])
|
|
|
|
with torch.no_grad():
|
|
trt_outputs = trt_model({'input': input})
|
|
trt_pool_feat = trt_outputs['output']
|
|
|
|
# compute pytorch_output
|
|
with torch.no_grad():
|
|
pytorch_pool_feat = wrapped_model(input)
|
|
|
|
# allclose
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
assert torch.allclose(pytorch_pool_feat, trt_pool_feat, atol=1e-5)
|