mirror of https://github.com/open-mmlab/mmcv.git
174 lines
7.5 KiB
Markdown
174 lines
7.5 KiB
Markdown
# Onnxruntime Custom Ops
|
|
|
|
<!-- TOC -->
|
|
|
|
- [Onnxruntime Custom Ops](#onnxruntime-custom-ops)
|
|
- [SoftNMS](#softnms)
|
|
- [Description](#description)
|
|
- [Parameters](#parameters)
|
|
- [Inputs](#inputs)
|
|
- [Outputs](#outputs)
|
|
- [Type Constraints](#type-constraints)
|
|
- [RoIAlign](#roialign)
|
|
- [Description](#description-1)
|
|
- [Parameters](#parameters-1)
|
|
- [Inputs](#inputs-1)
|
|
- [Outputs](#outputs-1)
|
|
- [Type Constraints](#type-constraints-1)
|
|
- [NMS](#nms)
|
|
- [Description](#description-2)
|
|
- [Parameters](#parameters-2)
|
|
- [Inputs](#inputs-2)
|
|
- [Outputs](#outputs-2)
|
|
- [Type Constraints](#type-constraints-2)
|
|
- [grid_sampler](#grid_sampler)
|
|
- [Description](#description-3)
|
|
- [Parameters](#parameters-3)
|
|
- [Inputs](#inputs-3)
|
|
- [Outputs](#outputs-3)
|
|
- [Type Constraints](#type-constraints-3)
|
|
|
|
<!-- TOC -->
|
|
|
|
## SoftNMS
|
|
|
|
### Description
|
|
|
|
Perform soft NMS on `boxes` with `scores`. Read [Soft-NMS -- Improving Object Detection With One Line of Code](https://arxiv.org/abs/1704.04503) for detail.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
| ------- | --------------- | -------------------------------------------------------------- |
|
|
| `float` | `iou_threshold` | IoU threshold for NMS |
|
|
| `float` | `sigma` | hyperparameter for gaussian method |
|
|
| `float` | `min_score` | score filter threshold |
|
|
| `int` | `method` | method to do the nms, (0: `naive`, 1: `linear`, 2: `gaussian`) |
|
|
| `int` | `offset` | `boxes` width or height is (x2 - x1 + offset). (0 or 1) |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>boxes</tt>: T</dt>
|
|
<dd>Input boxes. 2-D tensor of shape (N, 4). N is the number of boxes.</dd>
|
|
<dt><tt>scores</tt>: T</dt>
|
|
<dd>Input scores. 1-D tensor of shape (N, ).</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>dets</tt>: tensor(int64)</dt>
|
|
<dd>Output boxes and scores. 2-D tensor of shape (num_valid_boxes, 5), [[x1, y1, x2, y2, score], ...]. num_valid_boxes is the number of valid boxes.</dd>
|
|
<dt><tt>indices</tt>: T</dt>
|
|
<dd>Output indices. 1-D tensor of shape (num_valid_boxes, ).</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## RoIAlign
|
|
|
|
### Description
|
|
|
|
Perform RoIAlign on output feature, used in bbox_head of most two-stage detectors.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- |
|
|
| `int` | `output_height` | height of output roi |
|
|
| `int` | `output_width` | width of output roi |
|
|
| `float` | `spatial_scale` | used to scale the input boxes |
|
|
| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
|
|
| `str` | `mode` | pooling mode in each bin. `avg` or `max` |
|
|
| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd>
|
|
<dt><tt>rois</tt>: T</dt>
|
|
<dd>RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>feat</tt>: T</dt>
|
|
<dd>RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].<dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## NMS
|
|
|
|
### Description
|
|
|
|
Filter out boxes has high IoU overlap with previously selected boxes.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
| ------- | --------------- | ---------------------------------------------------------------------------------------------------------------- |
|
|
| `float` | `iou_threshold` | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range [0, 1]. Default to 0. |
|
|
| `int` | `offset` | 0 or 1, boxes' width or height is (x2 - x1 + offset). |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>bboxes</tt>: T</dt>
|
|
<dd>Input boxes. 2-D tensor of shape (num_boxes, 4). num_boxes is the number of input boxes.</dd>
|
|
<dt><tt>scores</tt>: T</dt>
|
|
<dd>Input scores. 1-D tensor of shape (num_boxes, ).</dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>indices</tt>: tensor(int32, Linear)</dt>
|
|
<dd>Selected indices. 1-D tensor of shape (num_valid_boxes, ). num_valid_boxes is the number of valid boxes.</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32)
|
|
|
|
## grid_sampler
|
|
|
|
### Description
|
|
|
|
Perform sample from `input` with pixel locations from `grid`.
|
|
|
|
### Parameters
|
|
|
|
| Type | Parameter | Description |
|
|
| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) |
|
|
| `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) |
|
|
| `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. |
|
|
|
|
### Inputs
|
|
|
|
<dl>
|
|
<dt><tt>input</tt>: T</dt>
|
|
<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.</dd>
|
|
<dt><tt>grid</tt>: T</dt>
|
|
<dd>Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW is the height and width of offset and output. </dd>
|
|
</dl>
|
|
|
|
### Outputs
|
|
|
|
<dl>
|
|
<dt><tt>output</tt>: T</dt>
|
|
<dd>Output feature; 4-D tensor of shape (N, C, outH, outW).</dd>
|
|
</dl>
|
|
|
|
### Type Constraints
|
|
|
|
- T:tensor(float32, Linear)
|