mmcv/tests/test_ops/test_carafe.py

86 lines
3.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch
from torch.autograd import gradcheck
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
class TestCarafe:
def test_carafe_naive_gradcheck(self):
if not torch.cuda.is_available():
return
from mmcv.ops import CARAFENaive
feat = torch.randn(
2, 64, 3, 3, requires_grad=True, device='cuda').double()
mask = torch.randn(
2, 100, 6, 6, requires_grad=True,
device='cuda').sigmoid().double()
gradcheck(CARAFENaive(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4)
def test_carafe_gradcheck(self):
if not torch.cuda.is_available():
return
from mmcv.ops import CARAFE
feat = torch.randn(
2, 64, 3, 3, requires_grad=True, device='cuda').double()
mask = torch.randn(
2, 100, 6, 6, requires_grad=True,
device='cuda').sigmoid().double()
gradcheck(CARAFE(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4)
@pytest.mark.parametrize('device', [
pytest.param(
'cuda',
marks=pytest.mark.skipif(
not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
pytest.param(
'mlu',
marks=pytest.mark.skipif(
not IS_MLU_AVAILABLE, reason='requires MLU support'))
])
def test_carafe_allclose(self, device):
try:
from mmcv.ops import CARAFE
except ModuleNotFoundError:
pytest.skip('test requires compilation')
np_feat = np.fromfile(
'tests/data/for_carafe/carafe_feat.bin', dtype=np.float32)
np_mask = np.fromfile(
'tests/data/for_carafe/carafe_mask.bin', dtype=np.float32)
np_output = np.fromfile(
'tests/data/for_carafe/carafe_output.bin', dtype=np.float32)
np_feat_grad = np.fromfile(
'tests/data/for_carafe/carafe_feat_grad.bin', dtype=np.float32)
np_mask_grad = np.fromfile(
'tests/data/for_carafe/carafe_mask_grad.bin', dtype=np.float32)
np_feat = np_feat.reshape((2, 64, 3, 3))
np_mask = np_mask.reshape((2, 100, 6, 6))
np_output = np_output.reshape((2, 64, 6, 6))
np_feat_grad = np_feat_grad.reshape((2, 64, 3, 3))
np_mask_grad = np_mask_grad.reshape((2, 100, 6, 6))
feat = torch.tensor(
np_feat, dtype=torch.float, device=device, requires_grad=True)
mask = torch.tensor(
np_mask, dtype=torch.float, device=device, requires_grad=True)
carafe = CARAFE(5, 4, 2)
output = carafe(feat, mask)
output.backward(torch.ones_like(output))
assert np.allclose(
output.data.type(torch.float).cpu().numpy(), np_output, atol=1e-3)
assert np.allclose(
feat.grad.data.type(torch.float).cpu().numpy(),
np_feat_grad,
atol=1e-3)
assert np.allclose(
mask.grad.data.type(torch.float).cpu().numpy(),
np_mask_grad,
atol=1e-3)