mmcv/tests/test_ops/test_upfirdn2d.py

85 lines
2.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
_USING_PARROTS = True
try:
from parrots.autograd import gradcheck
except ImportError:
from torch.autograd import gradcheck, gradgradcheck
_USING_PARROTS = False
class TestUpFirDn2d:
"""Unit test for UpFirDn2d.
Here, we just test the basic case of upsample version. More gerneal tests
will be included in other unit test for UpFirDnUpsample and
UpFirDnDownSample modules.
"""
@classmethod
def setup_class(cls):
kernel_1d = torch.tensor([1., 3., 3., 1.])
cls.kernel = kernel_1d[:, None] * kernel_1d[None, :]
cls.kernel = cls.kernel / cls.kernel.sum()
cls.factor = 2
pad = cls.kernel.shape[0] - cls.factor
cls.pad = ((pad + 1) // 2 + cls.factor - 1, pad // 2)
cls.input_tensor = torch.randn((2, 3, 4, 4), requires_grad=True)
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
def test_upfirdn2d(self):
from mmcv.ops import upfirdn2d
if _USING_PARROTS:
gradcheck(
upfirdn2d,
(self.input_tensor.cuda(),
self.kernel.type_as(
self.input_tensor).cuda(), self.factor, 1, self.pad),
delta=1e-4,
pt_atol=1e-3)
else:
gradcheck(
upfirdn2d,
(self.input_tensor.cuda(),
self.kernel.type_as(
self.input_tensor).cuda(), self.factor, 1, self.pad),
eps=1e-4,
atol=1e-3)
gradgradcheck(
upfirdn2d,
(self.input_tensor.cuda(),
self.kernel.type_as(
self.input_tensor).cuda(), self.factor, 1, self.pad),
eps=1e-4,
atol=1e-3)
# test with different up
kernel = torch.randn(3, 3)
out = upfirdn2d(
self.input_tensor.cuda(), filter=kernel.cuda(), up=2, padding=1)
assert out.shape == (2, 3, 8, 8)
# test with different down
input_tensor = torch.randn(2, 3, 8, 8)
out = upfirdn2d(
input_tensor.cuda(), filter=self.kernel.cuda(), down=2, padding=1)
assert out.shape == (2, 3, 4, 4)
# test with different flip_filter
out = upfirdn2d(
self.input_tensor.cuda(),
filter=self.kernel.cuda(),
flip_filter=True)
assert out.shape == (2, 3, 1, 1)
# test with different gain
out1 = upfirdn2d(
self.input_tensor.cuda(), filter=self.kernel.cuda(), gain=0.2)
out2 = upfirdn2d(
self.input_tensor.cuda(), filter=self.kernel.cuda(), gain=0.1)
assert torch.allclose(out1, out2 * 2)