mmcv/tests/test_ops/test_group_points.py

165 lines
8.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcv.ops import grouping_operation
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
def test_grouping_points(dtype):
idx = torch.tensor([[[0, 0, 0], [3, 3, 3], [8, 8, 8], [0, 0, 0], [0, 0, 0],
[0, 0, 0]],
[[0, 0, 0], [6, 6, 6], [9, 9, 9], [0, 0, 0], [0, 0, 0],
[0, 0, 0]]]).int().cuda()
features = torch.tensor([[[
0.5798, -0.7981, -0.9280, -1.3311, 1.3687, 0.9277, -0.4164, -1.8274,
0.9268, 0.8414
],
[
5.4247, 1.5113, 2.3944, 1.4740, 5.0300,
5.1030, 1.9360, 2.1939, 2.1581, 3.4666
],
[
-1.6266, -1.0281, -1.0393, -1.6931, -1.3982,
-0.5732, -1.0830, -1.7561, -1.6786, -1.6967
]],
[[
-0.0380, -0.1880, -1.5724, 0.6905, -0.3190,
0.7798, -0.3693, -0.9457, -0.2942, -1.8527
],
[
1.1773, 1.5009, 2.6399, 5.9242, 1.0962,
2.7346, 6.0865, 1.5555, 4.3303, 2.8229
],
[
-0.6646, -0.6870, -0.1125, -0.2224, -0.3445,
-1.4049, 0.4990, -0.7037, -0.9924, 0.0386
]]],
dtype=dtype).cuda()
output = grouping_operation(features, idx)
expected_output = torch.tensor(
[[[[0.5798, 0.5798, 0.5798], [-1.3311, -1.3311, -1.3311],
[0.9268, 0.9268, 0.9268], [0.5798, 0.5798, 0.5798],
[0.5798, 0.5798, 0.5798], [0.5798, 0.5798, 0.5798]],
[[5.4247, 5.4247, 5.4247], [1.4740, 1.4740, 1.4740],
[2.1581, 2.1581, 2.1581], [5.4247, 5.4247, 5.4247],
[5.4247, 5.4247, 5.4247], [5.4247, 5.4247, 5.4247]],
[[-1.6266, -1.6266, -1.6266], [-1.6931, -1.6931, -1.6931],
[-1.6786, -1.6786, -1.6786], [-1.6266, -1.6266, -1.6266],
[-1.6266, -1.6266, -1.6266], [-1.6266, -1.6266, -1.6266]]],
[[[-0.0380, -0.0380, -0.0380], [-0.3693, -0.3693, -0.3693],
[-1.8527, -1.8527, -1.8527], [-0.0380, -0.0380, -0.0380],
[-0.0380, -0.0380, -0.0380], [-0.0380, -0.0380, -0.0380]],
[[1.1773, 1.1773, 1.1773], [6.0865, 6.0865, 6.0865],
[2.8229, 2.8229, 2.8229], [1.1773, 1.1773, 1.1773],
[1.1773, 1.1773, 1.1773], [1.1773, 1.1773, 1.1773]],
[[-0.6646, -0.6646, -0.6646], [0.4990, 0.4990, 0.4990],
[0.0386, 0.0386, 0.0386], [-0.6646, -0.6646, -0.6646],
[-0.6646, -0.6646, -0.6646], [-0.6646, -0.6646, -0.6646]]]],
dtype=dtype).cuda()
assert torch.allclose(output, expected_output)
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
def test_stack_grouping_points(dtype):
idx = torch.tensor([[0, 0, 0], [3, 3, 3], [8, 8, 8], [1, 1, 1], [0, 0, 0],
[2, 2, 2], [0, 0, 0], [6, 6, 6], [9, 9, 9], [0, 0, 0],
[1, 1, 1], [0, 0, 0]]).int().cuda()
features = torch.tensor([[
0.5798, -0.7981, -0.9280, -1.3311, 1.3687, 0.9277, -0.4164, -1.8274,
0.9268, 0.8414
],
[
5.4247, 1.5113, 2.3944, 1.4740, 5.0300,
5.1030, 1.9360, 2.1939, 2.1581, 3.4666
],
[
-1.6266, -1.0281, -1.0393, -1.6931, -1.3982,
-0.5732, -1.0830, -1.7561, -1.6786, -1.6967
],
[
-0.0380, -0.1880, -1.5724, 0.6905, -0.3190,
0.7798, -0.3693, -0.9457, -0.2942, -1.8527
],
[
1.1773, 1.5009, 2.6399, 5.9242, 1.0962,
2.7346, 6.0865, 1.5555, 4.3303, 2.8229
],
[
-0.6646, -0.6870, -0.1125, -0.2224, -0.3445,
-1.4049, 0.4990, -0.7037, -0.9924, 0.0386
]],
dtype=dtype).cuda()
features_batch_cnt = torch.tensor([3, 3]).int().cuda()
indices_batch_cnt = torch.tensor([6, 6]).int().cuda()
output = grouping_operation(features, idx, features_batch_cnt,
indices_batch_cnt)
expected_output = torch.tensor(
[[[0.5798, 0.5798, 0.5798], [-0.7981, -0.7981, -0.7981],
[-0.9280, -0.9280, -0.9280], [-1.3311, -1.3311, -1.3311],
[1.3687, 1.3687, 1.3687], [0.9277, 0.9277, 0.9277],
[-0.4164, -0.4164, -0.4164], [-1.8274, -1.8274, -1.8274],
[0.9268, 0.9268, 0.9268], [0.8414, 0.8414, 0.8414]],
[[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
[[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
[[5.4247, 5.4247, 5.4247], [1.5113, 1.5113, 1.5113],
[2.3944, 2.3944, 2.3944], [1.4740, 1.4740, 1.4740],
[5.0300, 5.0300, 5.0300], [5.1030, 5.1030, 5.1030],
[1.9360, 1.9360, 1.9360], [2.1939, 2.1939, 2.1939],
[2.1581, 2.1581, 2.1581], [3.4666, 3.4666, 3.4666]],
[[0.5798, 0.5798, 0.5798], [-0.7981, -0.7981, -0.7981],
[-0.9280, -0.9280, -0.9280], [-1.3311, -1.3311, -1.3311],
[1.3687, 1.3687, 1.3687], [0.9277, 0.9277, 0.9277],
[-0.4164, -0.4164, -0.4164], [-1.8274, -1.8274, -1.8274],
[0.9268, 0.9268, 0.9268], [0.8414, 0.8414, 0.8414]],
[[-1.6266, -1.6266, -1.6266], [-1.0281, -1.0281, -1.0281],
[-1.0393, -1.0393, -1.0393], [-1.6931, -1.6931, -1.6931],
[-1.3982, -1.3982, -1.3982], [-0.5732, -0.5732, -0.5732],
[-1.0830, -1.0830, -1.0830], [-1.7561, -1.7561, -1.7561],
[-1.6786, -1.6786, -1.6786], [-1.6967, -1.6967, -1.6967]],
[[-0.0380, -0.0380, -0.0380], [-0.1880, -0.1880, -0.1880],
[-1.5724, -1.5724, -1.5724], [0.6905, 0.6905, 0.6905],
[-0.3190, -0.3190, -0.3190], [0.7798, 0.7798, 0.7798],
[-0.3693, -0.3693, -0.3693], [-0.9457, -0.9457, -0.9457],
[-0.2942, -0.2942, -0.2942], [-1.8527, -1.8527, -1.8527]],
[[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
[[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
[[-0.0380, -0.0380, -0.0380], [-0.1880, -0.1880, -0.1880],
[-1.5724, -1.5724, -1.5724], [0.6905, 0.6905, 0.6905],
[-0.3190, -0.3190, -0.3190], [0.7798, 0.7798, 0.7798],
[-0.3693, -0.3693, -0.3693], [-0.9457, -0.9457, -0.9457],
[-0.2942, -0.2942, -0.2942], [-1.8527, -1.8527, -1.8527]],
[[1.1773, 1.1773, 1.1773], [1.5009, 1.5009, 1.5009],
[2.6399, 2.6399, 2.6399], [5.9242, 5.9242, 5.9242],
[1.0962, 1.0962, 1.0962], [2.7346, 2.7346, 2.7346],
[6.0865, 6.0865, 6.0865], [1.5555, 1.5555, 1.5555],
[4.3303, 4.3303, 4.3303], [2.8229, 2.8229, 2.8229]],
[[-0.0380, -0.0380, -0.0380], [-0.1880, -0.1880, -0.1880],
[-1.5724, -1.5724, -1.5724], [0.6905, 0.6905, 0.6905],
[-0.3190, -0.3190, -0.3190], [0.7798, 0.7798, 0.7798],
[-0.3693, -0.3693, -0.3693], [-0.9457, -0.9457, -0.9457],
[-0.2942, -0.2942, -0.2942], [-1.8527, -1.8527, -1.8527]]],
dtype=dtype).cuda()
assert torch.allclose(output, expected_output)