mmcv/tests/test_ops/test_three_interpolate.py

79 lines
3.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcv.ops import three_interpolate
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
def test_three_interpolate(dtype):
features = torch.tensor(
[[[2.4350, 4.7516, 4.4995, 2.4350, 2.4350, 2.4350],
[3.1236, 2.6278, 3.0447, 3.1236, 3.1236, 3.1236],
[2.6732, 2.8677, 2.6436, 2.6732, 2.6732, 2.6732],
[0.0124, 7.0150, 7.0199, 0.0124, 0.0124, 0.0124],
[0.3207, 0.0000, 0.3411, 0.3207, 0.3207, 0.3207]],
[[0.0000, 0.9544, 2.4532, 0.0000, 0.0000, 0.0000],
[0.5346, 1.9176, 1.4715, 0.5346, 0.5346, 0.5346],
[0.0000, 0.2744, 2.0842, 0.0000, 0.0000, 0.0000],
[0.3414, 1.5063, 1.6209, 0.3414, 0.3414, 0.3414],
[0.5814, 0.0103, 0.0000, 0.5814, 0.5814, 0.5814]]],
dtype=dtype).cuda()
idx = torch.tensor([[[0, 1, 2], [2, 3, 4], [2, 3, 4], [0, 1, 2], [0, 1, 2],
[0, 1, 3]],
[[0, 2, 3], [1, 3, 4], [2, 1, 4], [0, 2, 4], [0, 2, 4],
[0, 1, 2]]]).int().cuda()
weight = torch.tensor([[[3.3333e-01, 3.3333e-01, 3.3333e-01],
[1.0000e+00, 5.8155e-08, 2.2373e-08],
[1.0000e+00, 1.7737e-08, 1.7356e-08],
[3.3333e-01, 3.3333e-01, 3.3333e-01],
[3.3333e-01, 3.3333e-01, 3.3333e-01],
[3.3333e-01, 3.3333e-01, 3.3333e-01]],
[[3.3333e-01, 3.3333e-01, 3.3333e-01],
[1.0000e+00, 1.3651e-08, 7.7312e-09],
[1.0000e+00, 1.7148e-08, 1.4070e-08],
[3.3333e-01, 3.3333e-01, 3.3333e-01],
[3.3333e-01, 3.3333e-01, 3.3333e-01],
[3.3333e-01, 3.3333e-01, 3.3333e-01]]],
dtype=dtype).cuda()
output = three_interpolate(features, idx, weight)
expected_output = torch.tensor([[[
3.8953e+00, 4.4995e+00, 4.4995e+00, 3.8953e+00, 3.8953e+00, 3.2072e+00
], [
2.9320e+00, 3.0447e+00, 3.0447e+00, 2.9320e+00, 2.9320e+00, 2.9583e+00
], [
2.7281e+00, 2.6436e+00, 2.6436e+00, 2.7281e+00, 2.7281e+00, 2.7380e+00
], [
4.6824e+00, 7.0199e+00, 7.0199e+00, 4.6824e+00, 4.6824e+00, 2.3466e+00
], [
2.2060e-01, 3.4110e-01, 3.4110e-01, 2.2060e-01, 2.2060e-01, 2.1380e-01
]],
[[
8.1773e-01, 9.5440e-01, 2.4532e+00,
8.1773e-01, 8.1773e-01, 1.1359e+00
],
[
8.4689e-01, 1.9176e+00, 1.4715e+00,
8.4689e-01, 8.4689e-01, 1.3079e+00
],
[
6.9473e-01, 2.7440e-01, 2.0842e+00,
6.9473e-01, 6.9473e-01, 7.8619e-01
],
[
7.6789e-01, 1.5063e+00, 1.6209e+00,
7.6789e-01, 7.6789e-01, 1.1562e+00
],
[
3.8760e-01, 1.0300e-02, 8.3569e-09,
3.8760e-01, 3.8760e-01, 1.9723e-01
]]],
dtype=dtype).cuda()
assert torch.allclose(output, expected_output, 1e-3, 1e-4)