mmcv/tests/test_ops/test_merge_cells.py

67 lines
2.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
"""
CommandLine:
pytest tests/test_merge_cells.py
"""
import torch
import torch.nn.functional as F
from mmcv.ops.merge_cells import (BaseMergeCell, ConcatCell, GlobalPoolingCell,
SumCell)
def test_sum_cell():
inputs_x = torch.randn([2, 256, 32, 32])
inputs_y = torch.randn([2, 256, 16, 16])
sum_cell = SumCell(256, 256)
output = sum_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:])
assert output.size() == inputs_x.size()
output = sum_cell(inputs_x, inputs_y, out_size=inputs_y.shape[-2:])
assert output.size() == inputs_y.size()
output = sum_cell(inputs_x, inputs_y)
assert output.size() == inputs_x.size()
def test_concat_cell():
inputs_x = torch.randn([2, 256, 32, 32])
inputs_y = torch.randn([2, 256, 16, 16])
concat_cell = ConcatCell(256, 256)
output = concat_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:])
assert output.size() == inputs_x.size()
output = concat_cell(inputs_x, inputs_y, out_size=inputs_y.shape[-2:])
assert output.size() == inputs_y.size()
output = concat_cell(inputs_x, inputs_y)
assert output.size() == inputs_x.size()
def test_global_pool_cell():
inputs_x = torch.randn([2, 256, 32, 32])
inputs_y = torch.randn([2, 256, 32, 32])
gp_cell = GlobalPoolingCell(with_out_conv=False)
gp_cell_out = gp_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:])
assert (gp_cell_out.size() == inputs_x.size())
gp_cell = GlobalPoolingCell(256, 256)
gp_cell_out = gp_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:])
assert (gp_cell_out.size() == inputs_x.size())
def test_resize_methods():
inputs_x = torch.randn([2, 256, 128, 128])
target_resize_sizes = [(128, 128), (256, 256)]
resize_methods_list = ['nearest', 'bilinear']
for method in resize_methods_list:
merge_cell = BaseMergeCell(upsample_mode=method)
for target_size in target_resize_sizes:
merge_cell_out = merge_cell._resize(inputs_x, target_size)
gt_out = F.interpolate(inputs_x, size=target_size, mode=method)
assert merge_cell_out.equal(gt_out)
target_size = (64, 64) # resize to a smaller size
merge_cell = BaseMergeCell()
merge_cell_out = merge_cell._resize(inputs_x, target_size)
kernel_size = inputs_x.shape[-1] // target_size[-1]
gt_out = F.max_pool2d(
inputs_x, kernel_size=kernel_size, stride=kernel_size)
assert (merge_cell_out == gt_out).all()