mmcv/mmcv/ops/modulated_deform_conv.py

361 lines
14 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from mmengine.logging import print_log
from mmengine.registry import MODELS
from mmengine.utils import deprecated_api_warning
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair, _single
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
'_ext',
['modulated_deform_conv_forward', 'modulated_deform_conv_backward'])
class ModulatedDeformConv2dFunction(Function):
@staticmethod
def symbolic(g, input, offset, mask, weight, bias, stride, padding,
dilation, groups, deform_groups):
input_tensors = [input, offset, mask, weight]
if bias is not None:
input_tensors.append(bias)
return g.op(
'mmcv::MMCVModulatedDeformConv2d',
*input_tensors,
stride_i=stride,
padding_i=padding,
dilation_i=dilation,
groups_i=groups,
deform_groups_i=deform_groups)
@staticmethod
def _calculate_sort_index(kernel_h, kernel_w, deformable_group):
split_num = deformable_group * 2 * kernel_h * kernel_w
sort_index = list(range(split_num))
sort_index_fp = (sort_index[1::2] + sort_index[::2])
sort_index_bp_dict = {i: idx for idx, i in enumerate(sort_index_fp)}
sort_index_bp = [sort_index_bp_dict[i] for i in sort_index]
sort_index_fp = torch.IntTensor(sort_index_fp)
sort_index_bp = torch.IntTensor(sort_index_bp)
sort_index_fp = sort_index_fp.npu()
sort_index_bp = sort_index_bp.npu()
return sort_index_fp, sort_index_bp
@staticmethod
def _npu_forward(ctx, input_tensor, offset, mask, weight, bias):
_, _, kernel_h, kernel_w = weight.shape
conv2d_bias = bias if len(bias) > 0 else None
sort_index_fp, sort_index_bp = \
ModulatedDeformConv2dFunction._calculate_sort_index(
kernel_w, kernel_h, ctx.deform_groups)
select_offset = offset.index_select(1, sort_index_fp)
offset_all = torch.cat([select_offset, mask], dim=1)
output, offset_out = torch.npu_deformable_conv2d(
input_tensor,
weight,
offset_all,
conv2d_bias,
kernel_size=[kernel_w, kernel_h],
stride=[1, 1, ctx.stride[0], ctx.stride[1]],
padding=[
ctx.padding[0], ctx.padding[0], ctx.padding[1], ctx.padding[1]
],
dilation=[1, 1, ctx.dilation[0], ctx.dilation[1]],
groups=ctx.groups,
deformable_groups=ctx.deform_groups,
modulated=True)
if weight.requires_grad or mask.requires_grad or offset.requires_grad \
or input_tensor.requires_grad:
ctx.save_for_backward(input_tensor, weight, offset_out, offset_all,
sort_index_bp)
return output
@staticmethod
def _npu_backward(ctx, grad_output):
input_tensor, weight, offset_out, offset_all, sort_index_bp = \
ctx.saved_tensors
grad_input, grad_weight, grad_offset_all, grad_bias = \
torch.npu_deformable_conv2dbk(
input_tensor, grad_output, offset_out, weight, offset_all,
kernel_size=[weight.shape[3], weight.shape[2]],
stride=[1, 1, ctx.stride[0], ctx.stride[1]],
padding=[ctx.padding[0], ctx.padding[0], ctx.padding[1],
ctx.padding[1]],
dilation=[1, 1, ctx.dilation[0], ctx.dilation[1]],
groups=ctx.groups, deformable_groups=ctx.deform_groups,
modulated=True)
grad_offset = grad_offset_all.index_select(1, sort_index_bp)
grad_mask = grad_offset_all[:, grad_offset.shape[1]:, :, :]
if not ctx.with_bias:
grad_bias = None
return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias,
None, None, None, None, None, None, None, None)
@staticmethod
def forward(ctx,
input: torch.Tensor,
offset: torch.Tensor,
mask: torch.Tensor,
weight: nn.Parameter,
bias: Optional[nn.Parameter] = None,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
deform_groups: int = 1) -> torch.Tensor:
if input is not None and input.dim() != 4:
raise ValueError(
f'Expected 4D tensor as input, got {input.dim()}D tensor \
instead.')
ctx.stride = _pair(stride)
ctx.padding = _pair(padding)
ctx.dilation = _pair(dilation)
ctx.groups = groups
ctx.deform_groups = deform_groups
ctx.with_bias = bias is not None
ctx.device = input.device.type
if not ctx.with_bias:
bias = input.new_empty(0) # fake tensor
# When pytorch version >= 1.6.0, amp is adopted for fp16 mode;
# amp won't cast the type of model (float32), but "offset" is cast
# to float16 by nn.Conv2d automatically, leading to the type
# mismatch with input (when it is float32) or weight.
# The flag for whether to use fp16 or amp is the type of "offset",
# we cast weight and input to temporarily support fp16 and amp
# whatever the pytorch version is.
input = input.type_as(offset)
weight = weight.type_as(input)
bias = bias.type_as(input) # type: ignore
mask = mask.type_as(input)
if ctx.device == 'npu':
output = ModulatedDeformConv2dFunction._npu_forward(
ctx, input, offset, mask, weight, bias)
return output
ctx.save_for_backward(input, offset, mask, weight, bias)
output = input.new_empty([
int(i) for i in ModulatedDeformConv2dFunction._output_size(
ctx, input, weight)
])
ctx._bufs = [input.new_empty(0), input.new_empty(0)]
ext_module.modulated_deform_conv_forward(
input,
weight,
bias,
ctx._bufs[0],
offset,
mask,
output,
ctx._bufs[1],
kernel_h=weight.size(2),
kernel_w=weight.size(3),
stride_h=ctx.stride[0],
stride_w=ctx.stride[1],
pad_h=ctx.padding[0],
pad_w=ctx.padding[1],
dilation_h=ctx.dilation[0],
dilation_w=ctx.dilation[1],
group=ctx.groups,
deformable_group=ctx.deform_groups,
with_bias=ctx.with_bias)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output: torch.Tensor) -> tuple:
if ctx.device == 'npu':
return ModulatedDeformConv2dFunction._npu_backward(
ctx, grad_output)
input, offset, mask, weight, bias = ctx.saved_tensors
grad_input = torch.zeros_like(input)
grad_offset = torch.zeros_like(offset)
grad_mask = torch.zeros_like(mask)
grad_weight = torch.zeros_like(weight)
grad_bias = torch.zeros_like(bias)
grad_output = grad_output.contiguous()
ext_module.modulated_deform_conv_backward(
input,
weight,
bias,
ctx._bufs[0],
offset,
mask,
ctx._bufs[1],
grad_input,
grad_weight,
grad_bias,
grad_offset,
grad_mask,
grad_output,
kernel_h=weight.size(2),
kernel_w=weight.size(3),
stride_h=ctx.stride[0],
stride_w=ctx.stride[1],
pad_h=ctx.padding[0],
pad_w=ctx.padding[1],
dilation_h=ctx.dilation[0],
dilation_w=ctx.dilation[1],
group=ctx.groups,
deformable_group=ctx.deform_groups,
with_bias=ctx.with_bias)
if not ctx.with_bias:
grad_bias = None
return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias,
None, None, None, None, None)
@staticmethod
def _output_size(ctx, input, weight):
channels = weight.size(0)
output_size = (input.size(0), channels)
for d in range(input.dim() - 2):
in_size = input.size(d + 2)
pad = ctx.padding[d]
kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1
stride_ = ctx.stride[d]
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
if not all(map(lambda s: s > 0, output_size)):
raise ValueError(
'convolution input is too small (output would be ' +
'x'.join(map(str, output_size)) + ')')
return output_size
modulated_deform_conv2d = ModulatedDeformConv2dFunction.apply
class ModulatedDeformConv2d(nn.Module):
@deprecated_api_warning({'deformable_groups': 'deform_groups'},
cls_name='ModulatedDeformConv2d')
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int]],
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
deform_groups: int = 1,
bias: Union[bool, str] = True):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
self.padding = _pair(padding)
self.dilation = _pair(dilation)
self.groups = groups
self.deform_groups = deform_groups
# enable compatibility with nn.Conv2d
self.transposed = False
self.output_padding = _single(0)
self.weight = nn.Parameter(
torch.Tensor(out_channels, in_channels // groups,
*self.kernel_size))
if bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.init_weights()
def init_weights(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.zero_()
def forward(self, x: torch.Tensor, offset: torch.Tensor,
mask: torch.Tensor) -> torch.Tensor:
return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias,
self.stride, self.padding,
self.dilation, self.groups,
self.deform_groups)
@MODELS.register_module('DCNv2')
class ModulatedDeformConv2dPack(ModulatedDeformConv2d):
"""A ModulatedDeformable Conv Encapsulation that acts as normal Conv
layers.
Args:
in_channels (int): Same as nn.Conv2d.
out_channels (int): Same as nn.Conv2d.
kernel_size (int or tuple[int]): Same as nn.Conv2d.
stride (int): Same as nn.Conv2d, while tuple is not supported.
padding (int): Same as nn.Conv2d, while tuple is not supported.
dilation (int): Same as nn.Conv2d, while tuple is not supported.
groups (int): Same as nn.Conv2d.
bias (bool or str): If specified as `auto`, it will be decided by the
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
False.
"""
_version = 2
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.conv_offset = nn.Conv2d(
self.in_channels,
self.deform_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
bias=True)
self.init_weights()
def init_weights(self) -> None:
super().init_weights()
if hasattr(self, 'conv_offset'):
self.conv_offset.weight.data.zero_()
self.conv_offset.bias.data.zero_()
def forward(self, x: torch.Tensor) -> torch.Tensor: # type: ignore
out = self.conv_offset(x)
o1, o2, mask = torch.chunk(out, 3, dim=1)
offset = torch.cat((o1, o2), dim=1)
mask = torch.sigmoid(mask)
return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias,
self.stride, self.padding,
self.dilation, self.groups,
self.deform_groups)
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
version = local_metadata.get('version', None)
if version is None or version < 2:
# the key is different in early versions
# In version < 2, ModulatedDeformConvPack
# loads previous benchmark models.
if (prefix + 'conv_offset.weight' not in state_dict
and prefix[:-1] + '_offset.weight' in state_dict):
state_dict[prefix + 'conv_offset.weight'] = state_dict.pop(
prefix[:-1] + '_offset.weight')
if (prefix + 'conv_offset.bias' not in state_dict
and prefix[:-1] + '_offset.bias' in state_dict):
state_dict[prefix +
'conv_offset.bias'] = state_dict.pop(prefix[:-1] +
'_offset.bias')
if version is not None and version > 1:
print_log(
f'ModulatedDeformConvPack {prefix.rstrip(".")} is upgraded to '
'version 2.',
logger='current')
super()._load_from_state_dict(state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys,
error_msgs)