mirror of
https://github.com/open-mmlab/mmcv.git
synced 2025-06-03 21:54:52 +08:00
* start trt plugin prototype * Add test module, modify roialign convertor * finish roi_align trt plugin * fix conflict of RoiAlign and MMCVRoiAlign * fix for lint * fix test tensorrt module * test_tensorrt move import to test func * add except error type * add tensorrt to setup.cfg * code format with yapf * fix for clang-format * move tensorrt_utils to mmcv/tensorrt, add comments, better test module * fix line endings, docformatter * isort init, remove trailing whitespace * add except type * fix setup.py * put import extension inside trt setup * change c++ guard, update pytest script, better setup, etc * sort import with isort * sort import with isort * move init of plugin lib to init_plugins.py * resolve format and add test dependency: tensorrt * tensorrt should be installed from source not from pypi * update naming style and input check * resolve lint error Co-authored-by: maningsheng <maningsheng@sensetime.com>
94 lines
3.0 KiB
Python
94 lines
3.0 KiB
Python
import os
|
|
|
|
import numpy as np
|
|
import onnx
|
|
import pytest
|
|
import torch
|
|
|
|
onnx_file = 'tmp.onnx'
|
|
trt_file = 'tmp.engine'
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not torch.cuda.is_available(), reason='CUDA is required for test_roialign')
|
|
def test_roialign():
|
|
try:
|
|
from mmcv.tensorrt import (TRTWraper, onnx2trt, save_trt_engine,
|
|
is_tensorrt_plugin_loaded)
|
|
if not is_tensorrt_plugin_loaded():
|
|
pytest.skip('test requires to complie TensorRT plugins in mmcv')
|
|
except (ImportError, ModuleNotFoundError):
|
|
pytest.skip('test requires to install TensorRT from source.')
|
|
|
|
try:
|
|
from mmcv.ops import RoIAlign
|
|
except (ImportError, ModuleNotFoundError):
|
|
pytest.skip('test requires compilation')
|
|
|
|
# trt config
|
|
fp16_mode = False
|
|
max_workspace_size = 1 << 30
|
|
|
|
# roi align config
|
|
pool_h = 2
|
|
pool_w = 2
|
|
spatial_scale = 1.0
|
|
sampling_ratio = 2
|
|
|
|
inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
|
|
([[[[1., 2.], [3., 4.]], [[4., 3.],
|
|
[2., 1.]]]], [[0., 0., 0., 1., 1.]]),
|
|
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
|
|
[11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
|
|
|
|
wrapped_model = RoIAlign((pool_w, pool_h), spatial_scale, sampling_ratio,
|
|
'avg', True).cuda()
|
|
for case in inputs:
|
|
np_input = np.array(case[0], dtype=np.float32)
|
|
np_rois = np.array(case[1], dtype=np.float32)
|
|
input = torch.from_numpy(np_input).cuda()
|
|
rois = torch.from_numpy(np_rois).cuda()
|
|
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
wrapped_model, (input, rois),
|
|
onnx_file,
|
|
export_params=True,
|
|
keep_initializers_as_inputs=True,
|
|
input_names=['input', 'rois'],
|
|
output_names=['roi_feat'],
|
|
opset_version=11)
|
|
onnx_model = onnx.load(onnx_file)
|
|
|
|
# create trt engine and wraper
|
|
opt_shape_dict = {
|
|
'input': [list(input.shape),
|
|
list(input.shape),
|
|
list(input.shape)],
|
|
'rois': [list(rois.shape),
|
|
list(rois.shape),
|
|
list(rois.shape)]
|
|
}
|
|
trt_engine = onnx2trt(
|
|
onnx_model,
|
|
opt_shape_dict,
|
|
fp16_mode=fp16_mode,
|
|
max_workspace_size=max_workspace_size)
|
|
save_trt_engine(trt_engine, trt_file)
|
|
trt_model = TRTWraper(trt_file, ['input', 'rois'], ['roi_feat'])
|
|
|
|
with torch.no_grad():
|
|
trt_outputs = trt_model({'input': input, 'rois': rois})
|
|
trt_roi_feat = trt_outputs['roi_feat']
|
|
|
|
# compute pytorch_output
|
|
with torch.no_grad():
|
|
pytorch_roi_feat = wrapped_model(input, rois)
|
|
|
|
# allclose
|
|
if os.path.exists(onnx_file):
|
|
os.remove(onnx_file)
|
|
if os.path.exists(trt_file):
|
|
os.remove(trt_file)
|
|
assert torch.allclose(pytorch_roi_feat, trt_roi_feat)
|