mmcv/tests/test_ops/test_cc_attention.py

57 lines
1.5 KiB
Python

import numpy as np
import torch
import torch.nn as nn
class Loss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input, target):
input = input.view(-1)
target = target.view(-1)
return torch.mean(input - target)
class TestCrissCrossAttention(object):
def test_cc_attention(self):
if not torch.cuda.is_available():
return
from mmcv.ops import CrissCrossAttention
loss_func = Loss()
input = np.fromfile(
'tests/data/for_ccattention/ccattention_input.bin',
dtype=np.float32)
output = np.fromfile(
'tests/data/for_ccattention/ccattention_output.bin',
dtype=np.float32)
input = input.reshape((1, 32, 45, 45))
output = output.reshape((1, 32, 45, 45))
label = torch.ones((1, 32, 45, 45))
input = torch.FloatTensor(input)
output = torch.FloatTensor(output)
input.requires_grad = True
shape = input.shape
channel = shape[1]
cca = CrissCrossAttention(channel)
cca.cuda()
input = input.cuda()
label = label.cuda()
cca.train()
test_output = cca(input)
test_loss = loss_func(test_output, label)
test_loss.backward()
test_output = test_output.detach().cpu().numpy()
output = output.numpy()
assert np.allclose(test_output, output)
assert test_output.shape == shape