mirror of https://github.com/open-mmlab/mmcv.git
196 lines
3.9 KiB
Markdown
196 lines
3.9 KiB
Markdown
## Utils
|
|
|
|
### Config
|
|
|
|
`Config` class is used for manipulating config and config files. It supports
|
|
loading configs from multiple file formats including **python**, **json** and **yaml**.
|
|
It provides dict-like apis to get and set values.
|
|
|
|
Here is an example of the config file `test.py`.
|
|
|
|
```python
|
|
a = 1
|
|
b = dict(b1=[0, 1, 2], b2=None)
|
|
c = (1, 2)
|
|
d = 'string'
|
|
```
|
|
|
|
To load and use configs
|
|
|
|
```python
|
|
>>> cfg = Config.fromfile('test.py')
|
|
>>> print(cfg)
|
|
>>> dict(a=1,
|
|
... b=dict(b1=[0, 1, 2], b2=None),
|
|
... c=(1, 2),
|
|
... d='string')
|
|
```
|
|
|
|
For all format configs, inheritance is supported. To reuse fields in other config files,
|
|
specify `_base_='./config_a.py'` or a list of configs `_base_=['./config_a.py', './config_b.py']`.
|
|
Here are 4 examples of config inheritance.
|
|
|
|
`config_a.py`
|
|
|
|
```python
|
|
a = 1
|
|
b = dict(b1=[0, 1, 2], b2=None)
|
|
```
|
|
|
|
#### Inherit from base config without overlaped keys.
|
|
|
|
`config_b.py`
|
|
|
|
```python
|
|
_base_ = './config_a.py'
|
|
c = (1, 2)
|
|
d = 'string'
|
|
```
|
|
|
|
```python
|
|
>>> cfg = Config.fromfile('./config_b.py')
|
|
>>> print(cfg)
|
|
>>> dict(a=1,
|
|
... b=dict(b1=[0, 1, 2], b2=None),
|
|
... c=(1, 2),
|
|
... d='string')
|
|
```
|
|
|
|
New fields in `config_b.py` are combined with old fields in `config_a.py`
|
|
|
|
#### Inherit from base config with overlaped keys.
|
|
|
|
`config_c.py`
|
|
|
|
```python
|
|
_base_ = './config_a.py'
|
|
b = dict(b2=1)
|
|
c = (1, 2)
|
|
```
|
|
|
|
```python
|
|
>>> cfg = Config.fromfile('./config_c.py')
|
|
>>> print(cfg)
|
|
>>> dict(a=1,
|
|
... b=dict(b1=[0, 1, 2], b2=1),
|
|
... c=(1, 2))
|
|
```
|
|
|
|
`b.b2=None` in `config_a` is replaced with `b.b2=1` in `config_c.py`.
|
|
|
|
#### Inherit from base config with ignored fields.
|
|
|
|
`config_d.py`
|
|
|
|
```python
|
|
_base_ = './config_a.py'
|
|
b = dict(_delete_=True, b2=None, b3=0.1)
|
|
c = (1, 2)
|
|
```
|
|
|
|
```python
|
|
>>> cfg = Config.fromfile('./config_d.py')
|
|
>>> print(cfg)
|
|
>>> dict(a=1,
|
|
... b=dict(b2=None, b3=0.1),
|
|
... c=(1, 2))
|
|
```
|
|
|
|
You may also set `_delete_=True` to ignore some fields in base configs. All old keys `b1, b2, b3` in `b` are replaced with new keys `b2, b3`.
|
|
|
|
#### Inherit from multiple base configs (the base configs should not contain the same keys).
|
|
|
|
`config_e.py`
|
|
|
|
```python
|
|
c = (1, 2)
|
|
d = 'string'
|
|
```
|
|
|
|
`config_f.py`
|
|
|
|
```python
|
|
_base_ = ['./config_a.py', './config_e.py']
|
|
```
|
|
|
|
```python
|
|
>>> cfg = Config.fromfile('./config_f.py')
|
|
>>> print(cfg)
|
|
>>> dict(a=1,
|
|
... b=dict(b1=[0, 1, 2], b2=None),
|
|
... c=(1, 2),
|
|
... d='string')
|
|
```
|
|
|
|
### ProgressBar
|
|
|
|
If you want to apply a method to a list of items and track the progress, `track_progress`
|
|
is a good choice. It will display a progress bar to tell the progress and ETA.
|
|
|
|
```python
|
|
import mmcv
|
|
|
|
def func(item):
|
|
# do something
|
|
pass
|
|
|
|
tasks = [item_1, item_2, ..., item_n]
|
|
|
|
mmcv.track_progress(func, tasks)
|
|
```
|
|
|
|
The output is like the following.
|
|

|
|
|
|
There is another method `track_parallel_progress`, which wraps multiprocessing and
|
|
progress visualization.
|
|
|
|
```python
|
|
mmcv.track_parallel_progress(func, tasks, 8) # 8 workers
|
|
```
|
|
|
|

|
|
|
|
If you want to iterate or enumerate a list of items and track the progress, `track_iter_progress`
|
|
is a good choice. It will display a progress bar to tell the progress and ETA.
|
|
|
|
```python
|
|
import mmcv
|
|
|
|
tasks = [item_1, item_2, ..., item_n]
|
|
|
|
for task in mmcv.track_iter_progress(tasks):
|
|
# do something like print
|
|
print(task)
|
|
|
|
for i, task in enumerate(mmcv.track_iter_progress(tasks)):
|
|
# do something like print
|
|
print(i)
|
|
print(task)
|
|
```
|
|
|
|
### Timer
|
|
|
|
It is convinient to compute the runtime of a code block with `Timer`.
|
|
|
|
```python
|
|
import time
|
|
|
|
with mmcv.Timer():
|
|
# simulate some code block
|
|
time.sleep(1)
|
|
```
|
|
|
|
or try with `since_start()` and `since_last_check()`. This former can
|
|
return the runtime since the timer starts and the latter will return the time
|
|
since the last time checked.
|
|
|
|
```python
|
|
timer = mmcv.Timer()
|
|
# code block 1 here
|
|
print(timer.since_start())
|
|
# code block 2 here
|
|
print(timer.since_last_check())
|
|
print(timer.since_start())
|
|
```
|