mmcv/tests/test_ops/test_tensorrt.py

481 lines
15 KiB
Python

import os
from functools import partial
import numpy as np
import onnx
import pytest
import torch
import torch.nn as nn
try:
from mmcv.tensorrt import (TRTWraper, is_tensorrt_plugin_loaded, onnx2trt,
save_trt_engine)
except ImportError:
pytest.skip(
'TensorRT should be installed from source.', allow_module_level=True)
if not torch.cuda.is_available():
pytest.skip(
'CUDA is required for this test module', allow_module_level=True)
if not is_tensorrt_plugin_loaded():
pytest.skip(
'Test requires to complie TensorRT plugins in mmcv',
allow_module_level=True)
class WrapFunction(nn.Module):
def __init__(self, wrapped_function):
super(WrapFunction, self).__init__()
self.wrapped_function = wrapped_function
def forward(self, *args, **kwargs):
return self.wrapped_function(*args, **kwargs)
onnx_file = 'tmp.onnx'
trt_file = 'tmp.engine'
def test_roialign():
try:
from mmcv.ops import RoIAlign
except (ImportError, ModuleNotFoundError):
pytest.skip('test requires compilation')
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
# roi align config
pool_h = 2
pool_w = 2
spatial_scale = 1.0
sampling_ratio = 2
inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
([[[[1., 2.], [3., 4.]], [[4., 3.],
[2., 1.]]]], [[0., 0., 0., 1., 1.]]),
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
[11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
wrapped_model = RoIAlign((pool_w, pool_h), spatial_scale, sampling_ratio,
'avg', True).cuda()
for case in inputs:
np_input = np.array(case[0], dtype=np.float32)
np_rois = np.array(case[1], dtype=np.float32)
input = torch.from_numpy(np_input).cuda()
rois = torch.from_numpy(np_rois).cuda()
with torch.no_grad():
torch.onnx.export(
wrapped_model, (input, rois),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input', 'rois'],
output_names=['roi_feat'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'input': [list(input.shape),
list(input.shape),
list(input.shape)],
'rois': [list(rois.shape),
list(rois.shape),
list(rois.shape)]
}
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, ['input', 'rois'], ['roi_feat'])
with torch.no_grad():
trt_outputs = trt_model({'input': input, 'rois': rois})
trt_roi_feat = trt_outputs['roi_feat']
# compute pytorch_output
with torch.no_grad():
pytorch_roi_feat = wrapped_model(input, rois)
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_roi_feat, trt_roi_feat)
def test_nms():
try:
import mmcv
from mmcv.ops import nms
except (ImportError, ModuleNotFoundError):
pytest.skip('test requires compilation')
os.environ['ONNX_BACKEND'] = 'MMCVTensorRT'
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
data = mmcv.load('./tests/data/batched_nms_data.pkl')
boxes = torch.from_numpy(data['boxes']).cuda()
scores = torch.from_numpy(data['scores']).cuda()
nms = partial(nms, iou_threshold=0.7, offset=0)
wrapped_model = WrapFunction(nms)
wrapped_model.cpu().eval()
with torch.no_grad():
torch.onnx.export(
wrapped_model, (boxes.detach().cpu(), scores.detach().cpu()),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['boxes', 'scores'],
output_names=['dets', 'inds'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'boxes': [list(boxes.shape),
list(boxes.shape),
list(boxes.shape)],
'scores': [list(scores.shape),
list(scores.shape),
list(scores.shape)]
}
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, ['boxes', 'scores'], ['dets', 'inds'])
with torch.no_grad():
trt_outputs = trt_model({'boxes': boxes, 'scores': scores})
trt_dets = trt_outputs['dets']
trt_inds = trt_outputs['inds']
trt_inds = trt_inds.long()
# compute pytorch_output
with torch.no_grad():
pytorch_outputs = wrapped_model(boxes, scores)
pytorch_dets, pytorch_inds = pytorch_outputs
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
num_boxes = pytorch_dets.shape[0]
trt_dets = trt_dets[:num_boxes, ...]
trt_inds = trt_inds[:num_boxes]
trt_scores = trt_dets[:, 4]
pytorch_scores = pytorch_dets[:, 4]
os.environ.pop('ONNX_BACKEND')
assert torch.allclose(pytorch_scores, trt_scores, atol=1e-3)
assert torch.equal(pytorch_inds, trt_inds)
def test_batched_nms():
try:
import mmcv
from mmcv.ops import batched_nms
except (ImportError, ModuleNotFoundError):
pytest.skip('test requires compilation')
# trt config
os.environ['ONNX_BACKEND'] = 'MMCVTensorRT'
fp16_mode = False
max_workspace_size = 1 << 30
data = mmcv.load('./tests/data/batched_nms_data.pkl')
nms_cfg = dict(type='nms', iou_threshold=0.7)
boxes = torch.from_numpy(data['boxes']).cuda()
scores = torch.from_numpy(data['scores']).cuda()
idxs = torch.from_numpy(data['idxs']).cuda()
class_agnostic = False
nms = partial(batched_nms, nms_cfg=nms_cfg, class_agnostic=class_agnostic)
wrapped_model = WrapFunction(nms)
wrapped_model.cpu().eval()
input_data = (boxes.detach().cpu(), scores.detach().cpu(),
idxs.detach().cpu())
input_names = ['boxes', 'scores', 'idxs']
output_names = ['dets', 'inds']
with torch.no_grad():
torch.onnx.export(
wrapped_model,
input_data,
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'boxes': [list(boxes.shape),
list(boxes.shape),
list(boxes.shape)],
'scores': [list(scores.shape),
list(scores.shape),
list(scores.shape)],
'idxs': [list(idxs.shape),
list(idxs.shape),
list(idxs.shape)]
}
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, input_names, output_names)
with torch.no_grad():
trt_outputs = trt_model({
'boxes': boxes,
'scores': scores,
'idxs': idxs
})
trt_dets = trt_outputs['dets']
trt_inds = trt_outputs['inds']
trt_inds = trt_inds.long()
# compute pytorch_output
with torch.no_grad():
pytorch_outputs = wrapped_model(boxes, scores, idxs)
pytorch_dets, pytorch_inds = pytorch_outputs
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
num_boxes = pytorch_dets.shape[0]
trt_dets = trt_dets[:num_boxes, ...]
trt_inds = trt_inds[:num_boxes]
trt_scores = trt_dets[:, 4]
pytorch_scores = pytorch_dets[:, 4]
os.environ.pop('ONNX_BACKEND')
assert torch.allclose(pytorch_scores, trt_scores)
assert torch.equal(pytorch_inds, trt_inds)
def test_scatternd():
def func(data):
data[:, :-2] += 1
data[:2, :] -= 1
return data
data = torch.zeros(4, 4).cuda()
wrapped_model = WrapFunction(func).eval().cuda()
input_names = ['input']
output_names = ['output']
with torch.no_grad():
torch.onnx.export(
wrapped_model, (data.clone(), ),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'input': [list(data.shape),
list(data.shape),
list(data.shape)],
}
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, input_names, output_names)
with torch.no_grad():
trt_outputs = trt_model({'input': data.clone()})
trt_results = trt_outputs['output']
# compute pytorch_output
with torch.no_grad():
pytorch_results = wrapped_model(data.clone())
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_results, trt_results)
def test_deform_conv():
try:
from mmcv.ops import DeformConv2dPack
except (ImportError, ModuleNotFoundError):
pytest.skip('test requires compilation')
input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
[[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
[[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
[[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]
c_in = 1
c_out = 1
x = torch.Tensor(input).cuda()
x.requires_grad = True
model = DeformConv2dPack(c_in, c_out, 2, stride=1, padding=0)
model.conv_offset.weight.data = torch.nn.Parameter(
torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
model.conv_offset.bias.data = torch.nn.Parameter(
torch.Tensor(offset_bias).reshape(8))
model.weight.data = torch.nn.Parameter(
torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
model.cuda().eval()
input_names = ['input']
output_names = ['output']
with torch.no_grad():
torch.onnx.export(
model, (x.clone(), ),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'input': [list(x.shape), list(x.shape),
list(x.shape)],
}
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, input_names, output_names)
with torch.no_grad():
trt_outputs = trt_model({'input': x.clone()})
trt_results = trt_outputs['output']
# compute pytorch_output
with torch.no_grad():
pytorch_results = model(x.clone())
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_results, trt_results)
@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
@pytest.mark.parametrize('align_corners', [True, False])
def test_grid_sample(mode, padding_mode, align_corners):
from mmcv.onnx.symbolic import register_extra_symbolics
register_extra_symbolics(11)
input = torch.rand(1, 1, 10, 10).cuda()
grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
grid = nn.functional.affine_grid(grid,
(1, 1, 15, 15)).type_as(input).cuda()
def func(input, grid):
return nn.functional.grid_sample(
input,
grid,
mode=mode,
padding_mode=padding_mode,
align_corners=align_corners)
wrapped_model = WrapFunction(func).eval().cuda()
input_names = ['input', 'grid']
output_names = ['output']
with torch.no_grad():
torch.onnx.export(
wrapped_model, (input.clone(), grid.clone()),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'input': [list(input.shape),
list(input.shape),
list(input.shape)],
'grid': [list(grid.shape),
list(grid.shape),
list(grid.shape)],
}
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, input_names, output_names)
with torch.no_grad():
trt_outputs = trt_model({'input': input.clone(), 'grid': grid.clone()})
trt_results = trt_outputs['output']
# compute pytorch_output
with torch.no_grad():
pytorch_results = wrapped_model(input.clone(), grid.clone())
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_results, trt_results)