mmcv/docs/zh_cn/understand_mmcv/cnn.md

2.4 KiB
Raw Blame History

卷积神经网络

我们为卷积神经网络提供了一些构建模块,包括层构建、模块组件和权重初始化。

网络层的构建

在运行实验时,我们可能需要尝试同属一种类型但不同配置的层,但又不希望每次都修改代码。于是我们提供一些层构建方法,可以从字典构建层,字典可以在配置文件中配置,也可以通过命令行参数指定。

用法

一个简单的例子:

from mmcv.cnn import build_conv_layer

cfg = dict(type='Conv3d')
layer = build_conv_layer(cfg, in_channels=3, out_channels=8, kernel_size=3)
  • build_conv_layer: 支持的类型包括 Conv1d、Conv2d、Conv3d、Conv (Conv是Conv2d的别名
  • build_norm_layer: 支持的类型包括 BN1d、BN2d、BN3d、BN (alias for BN2d)、SyncBN、GN、LN、IN1d、IN2d、IN3d、ININ是IN2d的别名
  • build_activation_layer:支持的类型包括 ReLU、LeakyReLU、PReLU、RReLU、ReLU6、ELU、Sigmoid、Tanh、GELU
  • build_upsample_layer: 支持的类型包括 nearest、bilinear、deconv、pixel_shuffle
  • build_padding_layer: 支持的类型包括 zero、reflect、replicate

拓展

我们还允许自定义层和算子来扩展构建方法。

  1. 编写和注册自己的模块:

    from mmengine.registry import MODELS
    
    @MODELS.register_module()
    class MyUpsample:
    
        def __init__(self, scale_factor):
            pass
    
        def forward(self, x):
            pass
    
  2. 在某处导入 MyUpsample (例如 __init__.py )然后使用它:

    from mmcv.cnn import build_upsample_layer
    
    cfg = dict(type='MyUpsample', scale_factor=2)
    layer = build_upsample_layer(cfg)
    

模块组件

我们还提供了常用的模块组件,以方便网络构建。 卷积组件 ConvModule 由 convolution、normalization以及activation layers 组成,更多细节请参考 ConvModule api

from mmcv.cnn import ConvModule

# conv + bn + relu
conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
# conv + gn + relu
conv = ConvModule(3, 8, 2, norm_cfg=dict(type='GN', num_groups=2))
# conv + relu
conv = ConvModule(3, 8, 2)
# conv
conv = ConvModule(3, 8, 2, act_cfg=None)
# conv + leaky relu
conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='LeakyReLU'))
# bn + conv + relu
conv = ConvModule(
    3, 8, 2, norm_cfg=dict(type='BN'), order=('norm', 'conv', 'act'))