mirror of https://github.com/open-mmlab/mmcv.git
385 lines
17 KiB
Python
385 lines
17 KiB
Python
# Copyright (c) Open-MMLab. All rights reserved.
|
|
import os.path as osp
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import pytest
|
|
from numpy.testing import assert_array_equal
|
|
|
|
import mmcv
|
|
|
|
|
|
class TestGeometric:
|
|
|
|
@classmethod
|
|
def setup_class(cls):
|
|
cls.data_dir = osp.join(osp.dirname(__file__), '../data')
|
|
# the test img resolution is 400x300
|
|
cls.img_path = osp.join(cls.data_dir, 'color.jpg')
|
|
cls.img = cv2.imread(cls.img_path)
|
|
|
|
def test_imresize(self):
|
|
resized_img = mmcv.imresize(self.img, (1000, 600))
|
|
assert resized_img.shape == (600, 1000, 3)
|
|
resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600),
|
|
True)
|
|
assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5
|
|
and h_scale == 2.0)
|
|
resized_img_dst = np.empty((600, 1000, 3), dtype=self.img.dtype)
|
|
resized_img = mmcv.imresize(self.img, (1000, 600), out=resized_img_dst)
|
|
assert id(resized_img_dst) == id(resized_img)
|
|
assert_array_equal(resized_img_dst,
|
|
mmcv.imresize(self.img, (1000, 600)))
|
|
for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']:
|
|
resized_img = mmcv.imresize(
|
|
self.img, (1000, 600), interpolation=mode)
|
|
assert resized_img.shape == (600, 1000, 3)
|
|
|
|
def test_imresize_like(self):
|
|
a = np.zeros((100, 200, 3))
|
|
resized_img = mmcv.imresize_like(self.img, a)
|
|
assert resized_img.shape == (100, 200, 3)
|
|
|
|
def test_rescale_size(self):
|
|
new_size, scale_factor = mmcv.rescale_size((400, 300), 1.5, True)
|
|
assert new_size == (600, 450) and scale_factor == 1.5
|
|
new_size, scale_factor = mmcv.rescale_size((400, 300), 0.934, True)
|
|
assert new_size == (374, 280) and scale_factor == 0.934
|
|
|
|
new_size = mmcv.rescale_size((400, 300), 1.5)
|
|
assert new_size == (600, 450)
|
|
new_size = mmcv.rescale_size((400, 300), 0.934)
|
|
assert new_size == (374, 280)
|
|
|
|
new_size, scale_factor = mmcv.rescale_size((400, 300), (1000, 600),
|
|
True)
|
|
assert new_size == (800, 600) and scale_factor == 2.0
|
|
new_size, scale_factor = mmcv.rescale_size((400, 300), (180, 200),
|
|
True)
|
|
assert new_size == (200, 150) and scale_factor == 0.5
|
|
|
|
new_size = mmcv.rescale_size((400, 300), (1000, 600))
|
|
assert new_size == (800, 600)
|
|
new_size = mmcv.rescale_size((400, 300), (180, 200))
|
|
assert new_size == (200, 150)
|
|
|
|
with pytest.raises(ValueError):
|
|
mmcv.rescale_size((400, 300), -0.5)
|
|
with pytest.raises(TypeError):
|
|
mmcv.rescale_size()((400, 300), [100, 100])
|
|
|
|
def test_imrescale(self):
|
|
# rescale by a certain factor
|
|
resized_img = mmcv.imrescale(self.img, 1.5)
|
|
assert resized_img.shape == (450, 600, 3)
|
|
resized_img = mmcv.imrescale(self.img, 0.934)
|
|
assert resized_img.shape == (280, 374, 3)
|
|
|
|
# rescale by a certain max_size
|
|
# resize (400, 300) to (max_1000, max_600)
|
|
resized_img = mmcv.imrescale(self.img, (1000, 600))
|
|
assert resized_img.shape == (600, 800, 3)
|
|
resized_img, scale = mmcv.imrescale(
|
|
self.img, (1000, 600), return_scale=True)
|
|
assert resized_img.shape == (600, 800, 3) and scale == 2.0
|
|
# resize (400, 300) to (max_200, max_180)
|
|
resized_img = mmcv.imrescale(self.img, (180, 200))
|
|
assert resized_img.shape == (150, 200, 3)
|
|
resized_img, scale = mmcv.imrescale(
|
|
self.img, (180, 200), return_scale=True)
|
|
assert resized_img.shape == (150, 200, 3) and scale == 0.5
|
|
|
|
# test exceptions
|
|
with pytest.raises(ValueError):
|
|
mmcv.imrescale(self.img, -0.5)
|
|
with pytest.raises(TypeError):
|
|
mmcv.imrescale(self.img, [100, 100])
|
|
|
|
def test_imflip(self):
|
|
# test horizontal flip (color image)
|
|
img = np.random.rand(80, 60, 3)
|
|
h, w, c = img.shape
|
|
flipped_img = mmcv.imflip(img)
|
|
assert flipped_img.shape == img.shape
|
|
for i in range(h):
|
|
for j in range(w):
|
|
for k in range(c):
|
|
assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
|
|
# test vertical flip (color image)
|
|
flipped_img = mmcv.imflip(img, direction='vertical')
|
|
assert flipped_img.shape == img.shape
|
|
for i in range(h):
|
|
for j in range(w):
|
|
for k in range(c):
|
|
assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
|
|
# test horizontal flip (grayscale image)
|
|
img = np.random.rand(80, 60)
|
|
h, w = img.shape
|
|
flipped_img = mmcv.imflip(img)
|
|
assert flipped_img.shape == img.shape
|
|
for i in range(h):
|
|
for j in range(w):
|
|
assert flipped_img[i, j] == img[i, w - 1 - j]
|
|
# test vertical flip (grayscale image)
|
|
flipped_img = mmcv.imflip(img, direction='vertical')
|
|
assert flipped_img.shape == img.shape
|
|
for i in range(h):
|
|
for j in range(w):
|
|
assert flipped_img[i, j] == img[h - 1 - i, j]
|
|
|
|
def test_imflip_(self):
|
|
# test horizontal flip (color image)
|
|
img = np.random.rand(80, 60, 3)
|
|
h, w, c = img.shape
|
|
img_for_flip = img.copy()
|
|
flipped_img = mmcv.imflip_(img_for_flip)
|
|
assert flipped_img.shape == img.shape
|
|
assert flipped_img.shape == img_for_flip.shape
|
|
assert id(flipped_img) == id(img_for_flip)
|
|
for i in range(h):
|
|
for j in range(w):
|
|
for k in range(c):
|
|
assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
|
|
assert flipped_img[i, j, k] == img_for_flip[i, j, k]
|
|
|
|
# test vertical flip (color image)
|
|
img_for_flip = img.copy()
|
|
flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
|
|
assert flipped_img.shape == img.shape
|
|
assert flipped_img.shape == img_for_flip.shape
|
|
assert id(flipped_img) == id(img_for_flip)
|
|
for i in range(h):
|
|
for j in range(w):
|
|
for k in range(c):
|
|
assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
|
|
assert flipped_img[i, j, k] == img_for_flip[i, j, k]
|
|
|
|
# test horizontal flip (grayscale image)
|
|
img = np.random.rand(80, 60)
|
|
h, w = img.shape
|
|
img_for_flip = img.copy()
|
|
flipped_img = mmcv.imflip_(img_for_flip)
|
|
assert flipped_img.shape == img.shape
|
|
assert flipped_img.shape == img_for_flip.shape
|
|
assert id(flipped_img) == id(img_for_flip)
|
|
for i in range(h):
|
|
for j in range(w):
|
|
assert flipped_img[i, j] == img[i, w - 1 - j]
|
|
assert flipped_img[i, j] == img_for_flip[i, j]
|
|
|
|
# test vertical flip (grayscale image)
|
|
img_for_flip = img.copy()
|
|
flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
|
|
assert flipped_img.shape == img.shape
|
|
assert flipped_img.shape == img_for_flip.shape
|
|
assert id(flipped_img) == id(img_for_flip)
|
|
for i in range(h):
|
|
for j in range(w):
|
|
assert flipped_img[i, j] == img[h - 1 - i, j]
|
|
assert flipped_img[i, j] == img_for_flip[i, j]
|
|
|
|
def test_imcrop(self):
|
|
# yapf: disable
|
|
bboxes = np.array([[100, 100, 199, 199], # center
|
|
[0, 0, 150, 100], # left-top corner
|
|
[250, 200, 399, 299], # right-bottom corner
|
|
[0, 100, 399, 199], # wide
|
|
[150, 0, 299, 299]]) # tall
|
|
# yapf: enable
|
|
|
|
# crop one bbox
|
|
patch = mmcv.imcrop(self.img, bboxes[0, :])
|
|
patches = mmcv.imcrop(self.img, bboxes[[0], :])
|
|
assert patch.shape == (100, 100, 3)
|
|
patch_path = osp.join(self.data_dir, 'patches')
|
|
ref_patch = np.load(patch_path + '/0.npy')
|
|
assert_array_equal(patch, ref_patch)
|
|
assert isinstance(patches, list) and len(patches) == 1
|
|
assert_array_equal(patches[0], ref_patch)
|
|
|
|
# crop with no scaling and padding
|
|
patches = mmcv.imcrop(self.img, bboxes)
|
|
assert len(patches) == bboxes.shape[0]
|
|
for i in range(len(patches)):
|
|
ref_patch = np.load(patch_path + f'/{i}.npy')
|
|
assert_array_equal(patches[i], ref_patch)
|
|
|
|
# crop with scaling and no padding
|
|
patches = mmcv.imcrop(self.img, bboxes, 1.2)
|
|
for i in range(len(patches)):
|
|
ref_patch = np.load(patch_path + f'/scale_{i}.npy')
|
|
assert_array_equal(patches[i], ref_patch)
|
|
|
|
# crop with scaling and padding
|
|
patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=[255, 255, 0])
|
|
for i in range(len(patches)):
|
|
ref_patch = np.load(patch_path + f'/pad_{i}.npy')
|
|
assert_array_equal(patches[i], ref_patch)
|
|
patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=0)
|
|
for i in range(len(patches)):
|
|
ref_patch = np.load(patch_path + f'/pad0_{i}.npy')
|
|
assert_array_equal(patches[i], ref_patch)
|
|
|
|
def test_impad(self):
|
|
# grayscale image
|
|
img = np.random.rand(10, 10).astype(np.float32)
|
|
padded_img = mmcv.impad(img, padding=(0, 0, 2, 5), pad_val=0)
|
|
assert_array_equal(img, padded_img[:10, :10])
|
|
assert_array_equal(
|
|
np.zeros((5, 12), dtype='float32'), padded_img[10:, :])
|
|
assert_array_equal(
|
|
np.zeros((15, 2), dtype='float32'), padded_img[:, 10:])
|
|
|
|
# RGB image
|
|
img = np.random.rand(10, 10, 3).astype(np.float32)
|
|
padded_img = mmcv.impad(img, padding=(0, 0, 2, 5), pad_val=0)
|
|
assert_array_equal(img, padded_img[:10, :10, :])
|
|
assert_array_equal(
|
|
np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :])
|
|
assert_array_equal(
|
|
np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :])
|
|
|
|
# RGB image with different values for three channels.
|
|
img = np.random.randint(256, size=(10, 10, 3)).astype('uint8')
|
|
padded_img = mmcv.impad(
|
|
img, padding=(0, 0, 2, 5), pad_val=(100, 110, 120))
|
|
assert_array_equal(img, padded_img[:10, :10, :])
|
|
assert_array_equal(
|
|
np.array([100, 110, 120], dtype='uint8') * np.ones(
|
|
(5, 12, 3), dtype='uint8'), padded_img[10:, :, :])
|
|
assert_array_equal(
|
|
np.array([100, 110, 120], dtype='uint8') * np.ones(
|
|
(15, 2, 3), dtype='uint8'), padded_img[:, 10:, :])
|
|
|
|
# Pad the grayscale image to shape (15, 12)
|
|
img = np.random.rand(10, 10).astype(np.float32)
|
|
padded_img = mmcv.impad(img, shape=(15, 12))
|
|
assert_array_equal(img, padded_img[:10, :10])
|
|
assert_array_equal(
|
|
np.zeros((5, 12), dtype='float32'), padded_img[10:, :])
|
|
assert_array_equal(
|
|
np.zeros((15, 2), dtype='float32'), padded_img[:, 10:])
|
|
|
|
# Pad the RGB image to shape (15, 12)
|
|
img = np.random.rand(10, 10, 3).astype(np.float32)
|
|
padded_img = mmcv.impad(img, shape=(15, 12))
|
|
assert_array_equal(img, padded_img[:10, :10, :])
|
|
assert_array_equal(
|
|
np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :])
|
|
assert_array_equal(
|
|
np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :])
|
|
|
|
# Pad the RGB image to shape (15, 12) with different values for
|
|
# three channels.
|
|
img = np.random.randint(256, size=(10, 10, 3)).astype('uint8')
|
|
padded_img = mmcv.impad(img, shape=(15, 12), pad_val=(100, 110, 120))
|
|
assert_array_equal(img, padded_img[:10, :10, :])
|
|
assert_array_equal(
|
|
np.array([100, 110, 120], dtype='uint8') * np.ones(
|
|
(5, 12, 3), dtype='uint8'), padded_img[10:, :, :])
|
|
assert_array_equal(
|
|
np.array([100, 110, 120], dtype='uint8') * np.ones(
|
|
(15, 2, 3), dtype='uint8'), padded_img[:, 10:, :])
|
|
|
|
# RGB image with padding=[5, 2]
|
|
img = np.random.rand(10, 10, 3).astype(np.float32)
|
|
padded_img = mmcv.impad(img, padding=(5, 2), pad_val=0)
|
|
|
|
assert padded_img.shape == (14, 20, 3)
|
|
assert_array_equal(img, padded_img[2:12, 5:15, :])
|
|
assert_array_equal(
|
|
np.zeros((2, 5, 3), dtype='float32'), padded_img[:2, :5, :])
|
|
assert_array_equal(
|
|
np.zeros((2, 5, 3), dtype='float32'), padded_img[12:, :5, :])
|
|
assert_array_equal(
|
|
np.zeros((2, 5, 3), dtype='float32'), padded_img[:2, 15:, :])
|
|
assert_array_equal(
|
|
np.zeros((2, 5, 3), dtype='float32'), padded_img[12:, 15:, :])
|
|
|
|
# RGB image with type(pad_val) = tuple
|
|
pad_val = (0, 1, 2)
|
|
img = np.random.rand(10, 10, 3).astype(np.float32)
|
|
padded_img = mmcv.impad(img, padding=(0, 0, 5, 2), pad_val=pad_val)
|
|
|
|
assert padded_img.shape == (12, 15, 3)
|
|
assert_array_equal(img, padded_img[:10, :10, :])
|
|
assert_array_equal(pad_val[0] * np.ones((2, 15, 1), dtype='float32'),
|
|
padded_img[10:, :, 0:1])
|
|
assert_array_equal(pad_val[1] * np.ones((2, 15, 1), dtype='float32'),
|
|
padded_img[10:, :, 1:2])
|
|
assert_array_equal(pad_val[2] * np.ones((2, 15, 1), dtype='float32'),
|
|
padded_img[10:, :, 2:3])
|
|
|
|
assert_array_equal(pad_val[0] * np.ones((12, 5, 1), dtype='float32'),
|
|
padded_img[:, 10:, 0:1])
|
|
assert_array_equal(pad_val[1] * np.ones((12, 5, 1), dtype='float32'),
|
|
padded_img[:, 10:, 1:2])
|
|
assert_array_equal(pad_val[2] * np.ones((12, 5, 1), dtype='float32'),
|
|
padded_img[:, 10:, 2:3])
|
|
|
|
# test different padding mode with channel number = 3
|
|
for mode in ['constant', 'edge', 'reflect', 'symmetric']:
|
|
img = np.random.rand(10, 10, 3).astype(np.float32)
|
|
padded_img = mmcv.impad(
|
|
img, padding=(0, 0, 5, 2), pad_val=pad_val, padding_mode=mode)
|
|
assert padded_img.shape == (12, 15, 3)
|
|
|
|
# test different padding mode with channel number = 1
|
|
for mode in ['constant', 'edge', 'reflect', 'symmetric']:
|
|
img = np.random.rand(10, 10).astype(np.float32)
|
|
padded_img = mmcv.impad(
|
|
img, padding=(0, 0, 5, 2), pad_val=0, padding_mode=mode)
|
|
assert padded_img.shape == (12, 15)
|
|
|
|
# Padding must be a int or a 2, or 4 element tuple.
|
|
with pytest.raises(ValueError):
|
|
mmcv.impad(img, padding=(1, 1, 1))
|
|
|
|
# pad_val must be a int or a tuple
|
|
with pytest.raises(TypeError):
|
|
mmcv.impad(img, padding=(1, 1, 1, 1), pad_val='wrong')
|
|
|
|
# When pad_val is a tuple,
|
|
# len(pad_val) should be equal to img.shape[-1]
|
|
img = np.random.rand(10, 10, 3).astype(np.float32)
|
|
with pytest.raises(AssertionError):
|
|
mmcv.impad(img, padding=3, pad_val=(100, 200))
|
|
|
|
with pytest.raises(AssertionError):
|
|
mmcv.impad(img, padding=2, pad_val=0, padding_mode='unknown')
|
|
|
|
with pytest.raises(AssertionError):
|
|
mmcv.impad(img, shape=(12, 15), padding=(0, 0, 5, 2))
|
|
|
|
def test_impad_to_multiple(self):
|
|
img = np.random.rand(11, 14, 3).astype(np.float32)
|
|
padded_img = mmcv.impad_to_multiple(img, 4)
|
|
assert padded_img.shape == (12, 16, 3)
|
|
img = np.random.rand(20, 12).astype(np.float32)
|
|
padded_img = mmcv.impad_to_multiple(img, 5)
|
|
assert padded_img.shape == (20, 15)
|
|
img = np.random.rand(20, 12).astype(np.float32)
|
|
padded_img = mmcv.impad_to_multiple(img, 2)
|
|
assert padded_img.shape == (20, 12)
|
|
|
|
def test_imrotate(self):
|
|
img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
|
|
assert_array_equal(mmcv.imrotate(img, 0), img)
|
|
img_r = np.array([[7, 4, 1], [8, 5, 2], [9, 6, 3]])
|
|
assert_array_equal(mmcv.imrotate(img, 90), img_r)
|
|
img_r = np.array([[3, 6, 9], [2, 5, 8], [1, 4, 7]])
|
|
assert_array_equal(mmcv.imrotate(img, -90), img_r)
|
|
|
|
img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.uint8)
|
|
img_r = np.array([[0, 6, 2, 0], [0, 7, 3, 0]])
|
|
assert_array_equal(mmcv.imrotate(img, 90), img_r)
|
|
img_r = np.array([[1, 0, 0, 0], [2, 0, 0, 0]])
|
|
assert_array_equal(mmcv.imrotate(img, 90, center=(0, 0)), img_r)
|
|
img_r = np.array([[255, 6, 2, 255], [255, 7, 3, 255]])
|
|
assert_array_equal(mmcv.imrotate(img, 90, border_value=255), img_r)
|
|
img_r = np.array([[5, 1], [6, 2], [7, 3], [8, 4]])
|
|
assert_array_equal(mmcv.imrotate(img, 90, auto_bound=True), img_r)
|
|
|
|
with pytest.raises(ValueError):
|
|
mmcv.imrotate(img, 90, center=(0, 0), auto_bound=True)
|