mmcv/tests/test_ops/test_carafe.py
zhuyuanhao c0f5492ee9
add ext ops, support parrots (#310)
* add ext ops, support parrots

* fix lint

* fix lint

* update op from mmdetection

* support non-pytorch env

* fix import bug

* test not import mmcv.op

* rename mmcv.op to mmcv.ops

* fix compile warning

* 1. fix syncbn warning in pytorch 1.5
2. support only cpu compile
3. add point_sample from mmdet

* fix text bug

* update docstrings

* fix line endings

* minor updates

* remove non_local from ops

* bug fix for nonlocal2d

* rename ops_ext to _ext and _ext to _flow_warp_ext

* update the doc

* try clang-format github action

* fix github action

* add ops to api.rst

* fix cpp format

* fix clang format issues

* remove .clang-format

Co-authored-by: Kai Chen <chenkaidev@gmail.com>
2020-06-28 23:15:47 +08:00

28 lines
938 B
Python

import torch
from torch.autograd import gradcheck
class TestCarafe(object):
def test_carafe_naive_gradcheck(self):
if not torch.cuda.is_available():
return
from mmcv.ops import CARAFENaive
feat = torch.randn(
2, 64, 3, 3, requires_grad=True, device='cuda').double()
mask = torch.randn(
2, 100, 6, 6, requires_grad=True,
device='cuda').sigmoid().double()
gradcheck(CARAFENaive(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4)
def test_carafe_gradcheck(self):
if not torch.cuda.is_available():
return
from mmcv.ops import CARAFE
feat = torch.randn(
2, 64, 3, 3, requires_grad=True, device='cuda').double()
mask = torch.randn(
2, 100, 6, 6, requires_grad=True,
device='cuda').sigmoid().double()
gradcheck(CARAFE(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4)