mmcv/tests/test_device/test_functions.py
Zaida Zhou 6a03918f55
[Feature] Add support for mps (#2092)
* [Feature] Add support for MPS

* fix import error

* update ut

* fix error

* trigger CI

* use a unique basename for test file modules

* avoid bc-breaking
2022-07-07 16:05:49 +08:00

91 lines
3.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcv.device._functions import Scatter, scatter
from mmcv.utils import IS_MLU_AVAILABLE, IS_MPS_AVAILABLE
def test_scatter():
# if the device is CPU, just return the input
input = torch.zeros([1, 3, 3, 3])
output = scatter(input=input, devices=[-1])
assert torch.allclose(input, output)
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = scatter(input=inputs, devices=[-1])
for input, output in zip(inputs, outputs):
assert torch.allclose(input, output)
# if the device is MLU, copy the input from CPU to MLU
if IS_MLU_AVAILABLE:
input = torch.zeros([1, 3, 3, 3])
output = scatter(input=input, devices=[0])
assert torch.allclose(input.to('mlu'), output)
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = scatter(input=inputs, devices=[0])
for input, output in zip(inputs, outputs):
assert torch.allclose(input.to('mlu'), output)
# if the device is MPS, copy the input from CPU to MPS
if IS_MPS_AVAILABLE:
input = torch.zeros([1, 3, 3, 3])
output = scatter(input=input, devices=[0])
assert torch.allclose(input.to('mps'), output)
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = scatter(input=inputs, devices=[0])
for input, output in zip(inputs, outputs):
assert torch.allclose(input.to('mps'), output)
# input should be a tensor or list of tensor
with pytest.raises(Exception):
scatter(5, [-1])
def test_Scatter():
# if the device is CPU, just return the input
target_devices = [-1]
input = torch.zeros([1, 3, 3, 3])
outputs = Scatter.forward(target_devices, input)
assert isinstance(outputs, tuple)
assert torch.allclose(input, outputs[0])
target_devices = [-1]
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = Scatter.forward(target_devices, inputs)
assert isinstance(outputs, tuple)
for input, output in zip(inputs, outputs):
assert torch.allclose(input, output)
# if the device is MLU, copy the input from CPU to MLU
if IS_MLU_AVAILABLE:
target_devices = [0]
input = torch.zeros([1, 3, 3, 3])
outputs = Scatter.forward(target_devices, input)
assert isinstance(outputs, tuple)
assert torch.allclose(input.to('mlu'), outputs[0])
target_devices = [0]
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = Scatter.forward(target_devices, inputs)
assert isinstance(outputs, tuple)
for input, output in zip(inputs, outputs):
assert torch.allclose(input.to('mlu'), output[0])
# if the device is MPS, copy the input from CPU to MPS
if IS_MPS_AVAILABLE:
target_devices = [0]
input = torch.zeros([1, 3, 3, 3])
outputs = Scatter.forward(target_devices, input)
assert isinstance(outputs, tuple)
assert torch.allclose(input.to('mps'), outputs[0])
target_devices = [0]
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = Scatter.forward(target_devices, inputs)
assert isinstance(outputs, tuple)
for input, output in zip(inputs, outputs):
assert torch.allclose(input.to('mps'), output[0])