mirror of https://github.com/open-mmlab/mmcv.git
95 lines
3.5 KiB
Python
95 lines
3.5 KiB
Python
import os
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
_USING_PARROTS = True
|
|
try:
|
|
from parrots.autograd import gradcheck
|
|
except ImportError:
|
|
from torch.autograd import gradcheck
|
|
_USING_PARROTS = False
|
|
|
|
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
|
|
([[[[1., 2.], [3., 4.]], [[4., 3.], [2.,
|
|
1.]]]], [[0., 0., 0., 1., 1.]]),
|
|
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
|
|
[11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
|
|
outputs = [([[[[1, 1.25], [1.5, 1.75]]]], [[[[3.0625, 0.4375],
|
|
[0.4375, 0.0625]]]]),
|
|
([[[[1., 1.25], [1.5, 1.75]], [[4, 3.75],
|
|
[3.5, 3.25]]]], [[[[3.0625, 0.4375],
|
|
[0.4375, 0.0625]],
|
|
[[3.0625, 0.4375],
|
|
[0.4375,
|
|
0.0625]]]]),
|
|
([[[[1.9375, 4.75],
|
|
[7.5625,
|
|
10.375]]]], [[[[0.47265625, 0.4296875, 0.4296875, 0.04296875],
|
|
[0.4296875, 0.390625, 0.390625, 0.0390625],
|
|
[0.4296875, 0.390625, 0.390625, 0.0390625],
|
|
[0.04296875, 0.0390625, 0.0390625,
|
|
0.00390625]]]])]
|
|
|
|
|
|
class TestDeformRoIPool(object):
|
|
|
|
def test_deform_roi_pool_gradcheck(self):
|
|
if not torch.cuda.is_available():
|
|
return
|
|
from mmcv.ops import DeformRoIPoolPack
|
|
pool_h = 2
|
|
pool_w = 2
|
|
spatial_scale = 1.0
|
|
sampling_ratio = 2
|
|
|
|
for case in inputs:
|
|
np_input = np.array(case[0])
|
|
np_rois = np.array(case[1])
|
|
|
|
x = torch.tensor(
|
|
np_input, device='cuda', dtype=torch.float, requires_grad=True)
|
|
rois = torch.tensor(np_rois, device='cuda', dtype=torch.float)
|
|
output_c = x.size(1)
|
|
|
|
droipool = DeformRoIPoolPack((pool_h, pool_w),
|
|
output_c,
|
|
spatial_scale=spatial_scale,
|
|
sampling_ratio=sampling_ratio).cuda()
|
|
|
|
if _USING_PARROTS:
|
|
gradcheck(droipool, (x, rois), no_grads=[rois])
|
|
else:
|
|
gradcheck(droipool, (x, rois), eps=1e-2, atol=1e-2)
|
|
|
|
def test_modulated_deform_roi_pool_gradcheck(self):
|
|
if not torch.cuda.is_available():
|
|
return
|
|
from mmcv.ops import ModulatedDeformRoIPoolPack
|
|
pool_h = 2
|
|
pool_w = 2
|
|
spatial_scale = 1.0
|
|
sampling_ratio = 2
|
|
|
|
for case in inputs:
|
|
np_input = np.array(case[0])
|
|
np_rois = np.array(case[1])
|
|
|
|
x = torch.tensor(
|
|
np_input, device='cuda', dtype=torch.float, requires_grad=True)
|
|
rois = torch.tensor(np_rois, device='cuda', dtype=torch.float)
|
|
output_c = x.size(1)
|
|
|
|
droipool = ModulatedDeformRoIPoolPack(
|
|
(pool_h, pool_w),
|
|
output_c,
|
|
spatial_scale=spatial_scale,
|
|
sampling_ratio=sampling_ratio).cuda()
|
|
|
|
if _USING_PARROTS:
|
|
gradcheck(droipool, (x, rois), no_grads=[rois])
|
|
else:
|
|
gradcheck(droipool, (x, rois), eps=1e-2, atol=1e-2)
|