mmcv/tests/test_device/test_mlu/test_mlu_parallel.py

99 lines
3.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest.mock import MagicMock, patch
import pytest
import torch
import torch.nn as nn
from mmcv.device.mlu import MLUDataParallel, MLUDistributedDataParallel
from mmcv.device.mlu._functions import Scatter, scatter
from mmcv.parallel import is_module_wrapper
from mmcv.utils import IS_MLU_AVAILABLE
def mock(*args, **kwargs):
pass
@patch('torch.distributed._broadcast_coalesced', mock)
@patch('torch.distributed.broadcast', mock)
@patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock)
def test_is_module_wrapper():
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(2, 2, 1)
def forward(self, x):
return self.conv(x)
model = Model()
assert not is_module_wrapper(model)
if IS_MLU_AVAILABLE:
mludp = MLUDataParallel(model)
assert is_module_wrapper(mludp)
mluddp = MLUDistributedDataParallel(model, process_group=MagicMock())
assert is_module_wrapper(mluddp)
def test_scatter():
# if the device is CPU, just return the input
input = torch.zeros([1, 3, 3, 3])
output = scatter(input=input, devices=[-1])
assert torch.allclose(input, output)
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = scatter(input=inputs, devices=[-1])
for input, output in zip(inputs, outputs):
assert torch.allclose(input, output)
# if the device is MLU, copy the input from CPU to MLU
if IS_MLU_AVAILABLE:
input = torch.zeros([1, 3, 3, 3])
output = scatter(input=input, devices=[0])
assert torch.allclose(input.to('mlu'), output)
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = scatter(input=inputs, devices=[0])
for input, output in zip(inputs, outputs):
assert torch.allclose(input.to('mlu'), output)
# input should be a tensor or list of tensor
with pytest.raises(Exception):
scatter(5, [-1])
def test_Scatter():
# if the device is CPU, just return the input
target_mlus = [-1]
input = torch.zeros([1, 3, 3, 3])
outputs = Scatter.forward(target_mlus, input)
assert isinstance(outputs, tuple)
assert torch.allclose(input, outputs[0])
target_mlus = [-1]
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = Scatter.forward(target_mlus, inputs)
assert isinstance(outputs, tuple)
for input, output in zip(inputs, outputs):
assert torch.allclose(input, output)
# if the device is MLU, copy the input from CPU to MLU
if IS_MLU_AVAILABLE:
target_mlus = [0]
input = torch.zeros([1, 3, 3, 3])
outputs = Scatter.forward(target_mlus, input)
assert isinstance(outputs, tuple)
assert torch.allclose(input.to('mlu'), outputs[0])
target_mlus = [0]
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = Scatter.forward(target_mlus, inputs)
assert isinstance(outputs, tuple)
for input, output in zip(inputs, outputs):
assert torch.allclose(input.to('mlu'), output[0])