mmcv/examples/train_cifar10.py

103 lines
3.0 KiB
Python

from argparse import ArgumentParser
from collections import OrderedDict
import torch
import torch.nn.functional as F
from mmcv import Config
from mmcv.torchpack import Runner
from torchvision import datasets, transforms
import resnet_cifar
def accuracy(output, target, topk=(1, )):
"""Computes the precision@k for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def batch_processor(model, data, train_mode):
img, label = data
label = label.cuda(non_blocking=True)
pred = model(img)
loss = F.cross_entropy(pred, label)
acc_top1, acc_top5 = accuracy(pred, label, topk=(1, 5))
log_vars = OrderedDict()
log_vars['loss'] = loss.item()
log_vars['acc_top1'] = acc_top1.item()
log_vars['acc_top5'] = acc_top5.item()
outputs = dict(loss=loss, log_vars=log_vars, num_samples=img.size(0))
return outputs
def parse_args():
parser = ArgumentParser(description='Train CIFAR-10 classification')
parser.add_argument('config', help='train config file path')
return parser.parse_args()
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
model = getattr(resnet_cifar, cfg.model)()
model = torch.nn.DataParallel(model, device_ids=cfg.gpus).cuda()
normalize = transforms.Normalize(mean=cfg.mean, std=cfg.std)
train_dataset = datasets.CIFAR10(
root=cfg.data_root,
train=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_dataset = datasets.CIFAR10(
root=cfg.data_root,
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
num_workers = cfg.data_workers * len(cfg.gpus)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=cfg.batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True)
runner = Runner(model, cfg.optimizer, batch_processor, cfg.work_dir)
runner.register_default_hooks(
lr_config=cfg.lr_policy,
checkpoint_config=cfg.checkpoint_cfg,
log_config=cfg.log_cfg)
if cfg.get('resume_from') is not None:
runner.resume(cfg.resume_from)
elif cfg.get('load_from') is not None:
runner.load_checkpoint(cfg.load_from)
runner.run([train_loader, val_loader], cfg.workflow, cfg.max_epoch)
if __name__ == '__main__':
main()