mmdeploy/docs/en/02-how-to-run/prebuilt_package_windows.md

356 lines
10 KiB
Markdown
Raw Permalink Normal View History

# How to use prebuilt package on Windows10
- [How to use prebuilt package on Windows10](#how-to-use-prebuilt-package-on-windows10)
- [Prerequisite](#prerequisite)
- [ONNX Runtime](#onnx-runtime)
- [TensorRT](#tensorrt)
- [Model Convert](#model-convert)
- [ONNX Runtime Example](#onnx-runtime-example)
- [TensorRT Example](#tensorrt-example)
- [Model Inference](#model-inference)
- [Backend Inference](#backend-inference)
- [ONNXRuntime](#onnxruntime)
- [TensorRT](#tensorrt-1)
- [Python SDK](#python-sdk)
- [ONNXRuntime](#onnxruntime-1)
- [TensorRT](#tensorrt-2)
- [C SDK](#c-sdk)
- [ONNXRuntime](#onnxruntime-2)
- [TensorRT](#tensorrt-3)
- [Troubleshooting](#troubleshooting)
______________________________________________________________________
This tutorial takes `mmdeploy-0.14.0-windows-amd64.zip` and `mmdeploy-0.14.0-windows-amd64-cuda11.3.zip` as examples to show how to use the prebuilt packages. The former supports onnxruntime cpu inference, the latter supports onnxruntime-gpu and tensorrt inference.
The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference.
```
.
├── build_sdk.ps1
├── example
├── include
├── install_opencv.ps1
├── lib
├── README.md
├── set_env.ps1
└── thirdparty
```
## Prerequisite
In order to use the prebuilt package, you need to install some third-party dependent libraries.
1. Follow the [get_started](../get_started.md) documentation to create a virtual python environment and install pytorch, torchvision and mmcv. To use the C interface of the SDK, you need to install [vs2019+](https://visualstudio.microsoft.com/), [OpenCV](https://github.com/opencv/opencv/releases).
:point_right: It is recommended to use `pip` instead of `conda` to install pytorch and torchvision
2. Clone the mmdeploy repository
```bash
git clone https://github.com/open-mmlab/mmdeploy.git
```
:point_right: The main purpose here is to use the configs, so there is no need to compile `mmdeploy`.
3. Install mmclassification
```bash
git clone https://github.com/open-mmlab/mmclassification.git
cd mmclassification
pip install -e .
```
4. Prepare a PyTorch model as our example
Download the pth [resnet18_8xb32_in1k_20210831-fbbb1da6.pth](https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_8xb32_in1k_20210831-fbbb1da6.pth). The corresponding config of the model is [resnet18_8xb32_in1k.py](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb32_in1k.py)
After the above work is done, the structure of the current working directory should be:
```
.
|-- mmclassification
|-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
```
### ONNX Runtime
In order to use `ONNX Runtime` backend, you should also do the following steps.
[Refactor] Rename mmdeploy_python to mmdeploy_runtime (#1911) * [Feature]: Add github prebuild workflow after new release. (#1852) * add prebuild dockerfile * add prebuild test workflw * update * update * rm other workflow for test * Update docker image * add win1o prebuild * add test prebuild * add windows scripts in prebuilt package * add linux scripts in prebuilt package * generate_build_config.py * fix cudnn search * fix env * fix script * fix rpath * fix cwd * fix windows * fix lint * windows prebuild ci * linux prebuild ci * fix * update trigger * Revert "rm other workflow for test" This reverts commit 0a0387275014efab71046d33a0e52904672b4012. * update sdk build readme * update prebuild * fix dll deps for python >= 3.8 on windows * fix ci * test prebuild * update test script to avoid modify upload folder * add onnxruntime.dll to mmdeploy_python * update prebuild workflow * update prebuild * Update loader.cpp.in * remove exists prebuild files * fix opencv env * update cmake options for mmdeploy python build * remove test code * fix lint --------- Co-authored-by: RunningLeon <mnsheng@yeah.net> Co-authored-by: RunningLeon <maningsheng@sensetime.com> * rename mmdeploy_python -> mmdeploy_runtime * test master prebuild * fix trt net build * Revert "test master prebuild" This reverts commit aad5258648f5f2c410c965b295c309fd1166da22. * add master branch * fix linux set_env script * update package_tools docs * fix gcc 7.3 aligned_alloc * comment temporarily as text_det_recog can't be built with prebuild package built under manylinux --------- Co-authored-by: RunningLeon <mnsheng@yeah.net> Co-authored-by: RunningLeon <maningsheng@sensetime.com>
2023-03-29 19:02:37 +08:00
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
```bash
pip install mmdeploy==0.14.0
pip install mmdeploy-runtime==0.14.0
```
:point_right: If you have installed it before, please uninstall it first.
6. Install onnxruntime package
```
pip install onnxruntime==1.8.1
```
7. Download [`onnxruntime`](https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1), and add environment variable.
As shown in the figure, add the lib directory of onnxruntime to the `PATH`.
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
:exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by `echo $env:PATH`.
8. Download SDK C/cpp Library mmdeploy-0.14.0-windows-amd64.zip
### TensorRT
In order to use `TensorRT` backend, you should also do the following steps.
[Refactor] Rename mmdeploy_python to mmdeploy_runtime (#1911) * [Feature]: Add github prebuild workflow after new release. (#1852) * add prebuild dockerfile * add prebuild test workflw * update * update * rm other workflow for test * Update docker image * add win1o prebuild * add test prebuild * add windows scripts in prebuilt package * add linux scripts in prebuilt package * generate_build_config.py * fix cudnn search * fix env * fix script * fix rpath * fix cwd * fix windows * fix lint * windows prebuild ci * linux prebuild ci * fix * update trigger * Revert "rm other workflow for test" This reverts commit 0a0387275014efab71046d33a0e52904672b4012. * update sdk build readme * update prebuild * fix dll deps for python >= 3.8 on windows * fix ci * test prebuild * update test script to avoid modify upload folder * add onnxruntime.dll to mmdeploy_python * update prebuild workflow * update prebuild * Update loader.cpp.in * remove exists prebuild files * fix opencv env * update cmake options for mmdeploy python build * remove test code * fix lint --------- Co-authored-by: RunningLeon <mnsheng@yeah.net> Co-authored-by: RunningLeon <maningsheng@sensetime.com> * rename mmdeploy_python -> mmdeploy_runtime * test master prebuild * fix trt net build * Revert "test master prebuild" This reverts commit aad5258648f5f2c410c965b295c309fd1166da22. * add master branch * fix linux set_env script * update package_tools docs * fix gcc 7.3 aligned_alloc * comment temporarily as text_det_recog can't be built with prebuild package built under manylinux --------- Co-authored-by: RunningLeon <mnsheng@yeah.net> Co-authored-by: RunningLeon <maningsheng@sensetime.com>
2023-03-29 19:02:37 +08:00
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
```bash
pip install mmdeploy==0.14.0
pip install mmdeploy-runtime-gpu==0.14.0
```
:point_right: If you have installed it before, please uninstall it first.
6. Install TensorRT related package and set environment variables
- CUDA Toolkit 11.1
- TensorRT 8.2.3.0
- cuDNN 8.2.1.0
Add the runtime libraries of TensorRT and cuDNN to the `PATH`. You can refer to the path setting of onnxruntime. Don't forget to install python package of TensorRT.
:exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by echo `$env:PATH`.
:exclamation: It is recommended to add only one version of the TensorRT/cuDNN runtime libraries to the `PATH`. It is better not to copy the runtime libraries of TensorRT/cuDNN to the cuda directory in `C:\`.
7. Install pycuda by `pip install pycuda`
8. Download SDK C/cpp Library mmdeploy-0.14.0-windows-amd64-cuda11.3.zip
## Model Convert
### ONNX Runtime Example
The following describes how to use the prebuilt package to do model conversion based on the previous downloaded pth.
After preparation work, the structure of the current working directory should be
```
..
|-- mmdeploy-0.14.0-windows-amd64
|-- mmclassification
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
```
Model conversion can be performed like below:
```python
from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDK
img = 'mmclassification/demo/demo.JPEG'
work_dir = 'work_dir/onnx/resnet'
save_file = 'end2end.onnx'
deploy_cfg = 'mmdeploy/configs/mmcls/classification_onnxruntime_dynamic.py'
model_cfg = 'mmclassification/configs/resnet/resnet18_8xb32_in1k.py'
model_checkpoint = 'resnet18_8xb32_in1k_20210831-fbbb1da6.pth'
device = 'cpu'
# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg,
model_checkpoint, device)
# 2. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
```
The structure of the converted model directory:
```bash
.\work_dir\
`-- onnx
`-- resnet
|-- deploy.json
|-- detail.json
|-- end2end.onnx
`-- pipeline.json
```
### TensorRT Example
The following describes how to use the prebuilt package to do model conversion based on the previous downloaded pth.
After installation of mmdeploy-tensorrt prebuilt package, the structure of the current working directory should be
```
..
|-- mmdeploy-0.14.0-windows-amd64-cuda11.3
|-- mmclassification
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
```
Model conversion can be performed like below:
```python
from mmdeploy.apis import torch2onnx
from mmdeploy.apis.tensorrt import onnx2tensorrt
from mmdeploy.backend.sdk.export_info import export2SDK
import os
img = 'mmclassification/demo/demo.JPEG'
work_dir = 'work_dir/trt/resnet'
save_file = 'end2end.onnx'
deploy_cfg = 'mmdeploy/configs/mmcls/classification_tensorrt_static-224x224.py'
model_cfg = 'mmclassification/configs/resnet/resnet18_8xb32_in1k.py'
model_checkpoint = 'resnet18_8xb32_in1k_20210831-fbbb1da6.pth'
device = 'cpu'
# 1. convert model to IR(onnx)
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg,
model_checkpoint, device)
# 2. convert IR to tensorrt
onnx_model = os.path.join(work_dir, save_file)
save_file = 'end2end.engine'
model_id = 0
device = 'cuda'
onnx2tensorrt(work_dir, save_file, model_id, deploy_cfg, onnx_model, device)
# 3. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
```
The structure of the converted model directory:
```
.\work_dir\
`-- trt
`-- resnet
|-- deploy.json
|-- detail.json
|-- end2end.engine
|-- end2end.onnx
`-- pipeline.json
```
## Model Inference
You can obtain two model folders after model conversion.
```
.\work_dir\onnx\resnet
.\work_dir\trt\resnet
```
The structure of current working directory
```
.
|-- mmdeploy-0.14.0-windows-amd64
|-- mmdeploy-0.14.0-windows-amd64-cuda11.3
|-- mmclassification
|-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
`-- work_dir
```
### Backend Inference
:exclamation: It should be emphasized that `inference_model` is not for deployment, but shields the difference of backend inference api(`TensorRT`, `ONNX Runtime` etc.). The main purpose of this api is to check whether the converted model can be inferred normally.
#### ONNXRuntime
```python
from mmdeploy.apis import inference_model
model_cfg = 'mmclassification/configs/resnet/resnet18_8xb32_in1k.py'
deploy_cfg = 'mmdeploy/configs/mmcls/classification_onnxruntime_dynamic.py'
backend_files = ['work_dir/onnx/resnet/end2end.onnx']
img = 'mmclassification/demo/demo.JPEG'
device = 'cpu'
result = inference_model(model_cfg, deploy_cfg, backend_files, img, device)
```
#### TensorRT
```python
from mmdeploy.apis import inference_model
model_cfg = 'mmclassification/configs/resnet/resnet18_8xb32_in1k.py'
deploy_cfg = 'mmdeploy/configs/mmcls/classification_tensorrt_static-224x224.py'
backend_files = ['work_dir/trt/resnet/end2end.engine']
img = 'mmclassification/demo/demo.JPEG'
device = 'cuda'
result = inference_model(model_cfg, deploy_cfg, backend_files, img, device)
```
### Python SDK
The following describes how to use the SDK's Python API for inference
#### ONNXRuntime
```bash
python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet\ .\mmclassification\demo\demo.JPEG
```
#### TensorRT
```bash
python .\mmdeploy\demo\python\image_classification.py cuda .\work_dir\trt\resnet\ .\mmclassification\demo\demo.JPEG
```
### C SDK
The following describes how to use the SDK's C API for inference
#### ONNXRuntime
1. Add environment variables
Refer to the README.md in sdk folder
2. Build examples
Refer to the README.md in sdk folder
3. Inference
It is recommended to use `CMD` here.
Under `mmdeploy-0.14.0-windows-amd64\\example\\cpp\\build\\Release` directory
```
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmclassification\demo\demo.JPEG
```
#### TensorRT
1. Add environment variables
Refer to the README.md in sdk folder
2. Build examples
Refer to the README.md in sdk folder
3. Inference
It is recommended to use `CMD` here.
Under `mmdeploy-0.14.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release` directory
```
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmclassification\demo\demo.JPEG
```
## Troubleshooting
If you encounter problems, please refer to [FAQ](../faq.md)