197 lines
8.5 KiB
Markdown
197 lines
8.5 KiB
Markdown
|
# MMagic Deployment
|
||
|
|
||
|
- [MMagic Deployment](#mmagic-deployment)
|
||
|
- [Installation](#installation)
|
||
|
- [Install mmagic](#install-mmagic)
|
||
|
- [Install mmdeploy](#install-mmdeploy)
|
||
|
- [Convert model](#convert-model)
|
||
|
- [Convert super resolution model](#convert-super-resolution-model)
|
||
|
- [Model specification](#model-specification)
|
||
|
- [Model inference](#model-inference)
|
||
|
- [Backend model inference](#backend-model-inference)
|
||
|
- [SDK model inference](#sdk-model-inference)
|
||
|
- [Supported models](#supported-models)
|
||
|
|
||
|
______________________________________________________________________
|
||
|
|
||
|
[MMagic](https://github.com/open-mmlab/mmagic/tree/main) aka `mmagic` is an open-source image and video editing toolbox based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com/) project.
|
||
|
|
||
|
## Installation
|
||
|
|
||
|
### Install mmagic
|
||
|
|
||
|
Please follow the [installation guide](https://github.com/open-mmlab/mmagic/tree/main#installation) to install mmagic.
|
||
|
|
||
|
### Install mmdeploy
|
||
|
|
||
|
There are several methods to install mmdeploy, among which you can choose an appropriate one according to your target platform and device.
|
||
|
|
||
|
**Method I:** Install precompiled package
|
||
|
|
||
|
You can refer to [get_started](https://mmdeploy.readthedocs.io/en/latest/get_started.html#installation)
|
||
|
|
||
|
**Method II:** Build using scripts
|
||
|
|
||
|
If your target platform is **Ubuntu 18.04 or later version**, we encourage you to run
|
||
|
[scripts](../01-how-to-build/build_from_script.md). For example, the following commands install mmdeploy as well as inference engine - `ONNX Runtime`.
|
||
|
|
||
|
```shell
|
||
|
git clone --recursive -b main https://github.com/open-mmlab/mmdeploy.git
|
||
|
cd mmdeploy
|
||
|
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
|
||
|
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
|
||
|
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH
|
||
|
```
|
||
|
|
||
|
**Method III:** Build from source
|
||
|
|
||
|
If neither **I** nor **II** meets your requirements, [building mmdeploy from source](../01-how-to-build/build_from_source.md) is the last option.
|
||
|
|
||
|
## Convert model
|
||
|
|
||
|
You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/main/tools/deploy.py) to convert mmagic models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/tree/main/docs/en/02-how-to-run/convert_model.md#usage).
|
||
|
|
||
|
When using `tools/deploy.py`, it is crucial to specify the correct deployment config. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmagic) of all supported backends for mmagic, under which the config file path follows the pattern:
|
||
|
|
||
|
```
|
||
|
{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py
|
||
|
```
|
||
|
|
||
|
- **{task}:** task in mmagic.
|
||
|
|
||
|
MMDeploy supports models of one task in mmagic, i.e., `super resolution`. Please refer to chapter [supported models](#supported-models) for task-model organization.
|
||
|
|
||
|
**DO REMEMBER TO USE** the corresponding deployment config file when trying to convert models of different tasks.
|
||
|
|
||
|
- **{backend}:** inference backend, such as onnxruntime, tensorrt, pplnn, ncnn, openvino, coreml etc.
|
||
|
|
||
|
- **{precision}:** fp16, int8. When it's empty, it means fp32
|
||
|
|
||
|
- **{static | dynamic}:** static shape or dynamic shape
|
||
|
|
||
|
- **{shape}:** input shape or shape range of a model
|
||
|
|
||
|
### Convert super resolution model
|
||
|
|
||
|
The command below shows an example about converting `ESRGAN` model to onnx model that can be inferred by ONNX Runtime.
|
||
|
|
||
|
```shell
|
||
|
cd mmdeploy
|
||
|
# download esrgan model from mmagic model zoo
|
||
|
mim download mmagic --config esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k --dest .
|
||
|
# convert esrgan model to onnxruntime model with dynamic shape
|
||
|
python tools/deploy.py \
|
||
|
configs/mmagic/super-resolution/super-resolution_onnxruntime_dynamic.py \
|
||
|
esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py \
|
||
|
esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth \
|
||
|
demo/resources/face.png \
|
||
|
--work-dir mmdeploy_models/mmagic/ort \
|
||
|
--device cpu \
|
||
|
--show \
|
||
|
--dump-info
|
||
|
```
|
||
|
|
||
|
You can also convert the above model to other backend models by changing the deployment config file `*_onnxruntime_dynamic.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmagic), e.g., converting to tensorrt model by `super-resolution/super-resolution_tensorrt-_dynamic-32x32-512x512.py`.
|
||
|
|
||
|
```{tip}
|
||
|
When converting mmagic models to tensorrt models, --device should be set to "cuda"
|
||
|
```
|
||
|
|
||
|
## Model specification
|
||
|
|
||
|
Before moving on to model inference chapter, let's know more about the converted model structure which is very important for model inference.
|
||
|
|
||
|
The converted model locates in the working directory like `mmdeploy_models/mmagic/ort` in the previous example. It includes:
|
||
|
|
||
|
```
|
||
|
mmdeploy_models/mmagic/ort
|
||
|
├── deploy.json
|
||
|
├── detail.json
|
||
|
├── end2end.onnx
|
||
|
└── pipeline.json
|
||
|
```
|
||
|
|
||
|
in which,
|
||
|
|
||
|
- **end2end.onnx**: backend model which can be inferred by ONNX Runtime
|
||
|
- \***.json**: the necessary information for mmdeploy SDK
|
||
|
|
||
|
The whole package **mmdeploy_models/mmagic/ort** is defined as **mmdeploy SDK model**, i.e., **mmdeploy SDK model** includes both backend model and inference meta information.
|
||
|
|
||
|
## Model inference
|
||
|
|
||
|
### Backend model inference
|
||
|
|
||
|
Take the previous converted `end2end.onnx` model as an example, you can use the following code to inference the model and visualize the results.
|
||
|
|
||
|
```python
|
||
|
from mmdeploy.apis.utils import build_task_processor
|
||
|
from mmdeploy.utils import get_input_shape, load_config
|
||
|
import torch
|
||
|
|
||
|
deploy_cfg = 'configs/mmagic/super-resolution/super-resolution_onnxruntime_dynamic.py'
|
||
|
model_cfg = 'esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py'
|
||
|
device = 'cpu'
|
||
|
backend_model = ['./mmdeploy_models/mmagic/ort/end2end.onnx']
|
||
|
image = './demo/resources/face.png'
|
||
|
|
||
|
# read deploy_cfg and model_cfg
|
||
|
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
|
||
|
|
||
|
# build task and backend model
|
||
|
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
|
||
|
model = task_processor.build_backend_model(backend_model)
|
||
|
|
||
|
# process input image
|
||
|
input_shape = get_input_shape(deploy_cfg)
|
||
|
model_inputs, _ = task_processor.create_input(image, input_shape)
|
||
|
|
||
|
# do model inference
|
||
|
with torch.no_grad():
|
||
|
result = model.test_step(model_inputs)
|
||
|
|
||
|
# visualize results
|
||
|
task_processor.visualize(
|
||
|
image=image,
|
||
|
model=model,
|
||
|
result=result[0],
|
||
|
window_name='visualize',
|
||
|
output_file='output_restorer.bmp')
|
||
|
```
|
||
|
|
||
|
### SDK model inference
|
||
|
|
||
|
You can also perform SDK model inference like following,
|
||
|
|
||
|
```python
|
||
|
from mmdeploy_runtime import Restorer
|
||
|
import cv2
|
||
|
|
||
|
img = cv2.imread('./demo/resources/face.png')
|
||
|
|
||
|
# create a classifier
|
||
|
restorer = Restorer(model_path='./mmdeploy_models/mmagic/ort', device_name='cpu', device_id=0)
|
||
|
# perform inference
|
||
|
result = restorer(img)
|
||
|
|
||
|
# visualize inference result
|
||
|
# convert to BGR
|
||
|
result = result[..., ::-1]
|
||
|
cv2.imwrite('output_restorer.bmp', result)
|
||
|
```
|
||
|
|
||
|
Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from [demos](https://github.com/open-mmlab/mmdeploy/tree/main/demo).
|
||
|
|
||
|
## Supported models
|
||
|
|
||
|
| Model | Task | ONNX Runtime | TensorRT | ncnn | PPLNN | OpenVINO |
|
||
|
| :-------------------------------------------------------------------------------- | :--------------- | :----------: | :------: | :--: | :---: | :------: |
|
||
|
| [SRCNN](https://github.com/open-mmlab/mmagic/tree/main/configs/srcnn) | super-resolution | Y | Y | Y | Y | Y |
|
||
|
| [ESRGAN](https://github.com/open-mmlab/mmagic/tree/main/configs/esrgan) | super-resolution | Y | Y | Y | Y | Y |
|
||
|
| [ESRGAN-PSNR](https://github.com/open-mmlab/mmagic/tree/main/configs/esrgan) | super-resolution | Y | Y | Y | Y | Y |
|
||
|
| [SRGAN](https://github.com/open-mmlab/mmagic/tree/main/configs/srgan_resnet) | super-resolution | Y | Y | Y | Y | Y |
|
||
|
| [SRResNet](https://github.com/open-mmlab/mmagic/tree/main/configs/srgan_resnet) | super-resolution | Y | Y | Y | Y | Y |
|
||
|
| [Real-ESRGAN](https://github.com/open-mmlab/mmagic/tree/main/configs/real_esrgan) | super-resolution | Y | Y | Y | Y | Y |
|
||
|
| [EDSR](https://github.com/open-mmlab/mmagic/tree/main/configs/edsr) | super-resolution | Y | Y | Y | N | Y |
|
||
|
| [RDN](https://github.com/open-mmlab/mmagic/tree/main/configs/rdn) | super-resolution | Y | Y | Y | Y | Y |
|