|
|
|
At first, we would mark the model input, which could be done by marking the input tensor `img` in the `forward` method of `BaseDetector` class, which is the parent class of all detector classes. Thus we name this marking point as `detector_forward` and mark the inputs as `input`. Since there could be three outputs for detectors such as `Mask RCNN`, the outputs are marked as `dets`, `labels`, and `masks`. The following code shows the idea of adding mark functions and calling the mark functions in the rewrite. For source code, you could refer to [mmdeploy/codebase/mmdet/models/detectors/base.py](https://github.com/open-mmlab/mmdeploy/blob/86a50e343a3a45d7bc2ba3256100accc4973e71d/mmdeploy/codebase/mmdet/models/detectors/base.py)
|