2021-11-30 15:00:37 +08:00
|
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
2021-11-12 05:39:42 +03:00
|
|
|
import torch
|
|
|
|
|
2021-11-25 09:57:05 +08:00
|
|
|
from mmdeploy.codebase.mmdet import get_post_processing_params, multiclass_nms
|
2022-09-06 11:48:39 +08:00
|
|
|
from mmdeploy.core import FUNCTION_REWRITER, mark
|
2021-11-12 05:39:42 +03:00
|
|
|
|
|
|
|
|
|
|
|
@FUNCTION_REWRITER.register_rewriter(
|
|
|
|
func_name='mmdet.models.YOLOXHead.get_bboxes')
|
2021-11-15 10:41:27 +08:00
|
|
|
def yolox_head__get_bboxes(ctx,
|
|
|
|
self,
|
|
|
|
cls_scores,
|
|
|
|
bbox_preds,
|
|
|
|
objectnesses,
|
|
|
|
img_metas=None,
|
|
|
|
cfg=None,
|
|
|
|
rescale=False,
|
|
|
|
with_nms=True):
|
2021-11-25 09:57:05 +08:00
|
|
|
"""Rewrite `get_bboxes` of `YOLOXHead` for default backend.
|
2021-11-12 05:39:42 +03:00
|
|
|
|
2021-11-15 10:41:27 +08:00
|
|
|
Rewrite this function to deploy model, transform network output for a
|
|
|
|
batch into bbox predictions.
|
2021-11-12 05:39:42 +03:00
|
|
|
|
|
|
|
Args:
|
|
|
|
ctx: Context that contains original meta information.
|
|
|
|
self: Represent the instance of the original class.
|
|
|
|
cls_scores (list[Tensor]): Classification scores for all
|
|
|
|
scale levels, each is a 4D-tensor, has shape
|
|
|
|
(batch_size, num_priors * num_classes, H, W).
|
|
|
|
bbox_preds (list[Tensor]): Box energies / deltas for all
|
|
|
|
scale levels, each is a 4D-tensor, has shape
|
|
|
|
(batch_size, num_priors * 4, H, W).
|
|
|
|
objectnesses (list[Tensor], Optional): Score factor for
|
|
|
|
all scale level, each is a 4D-tensor, has shape
|
|
|
|
(batch_size, 1, H, W).
|
2021-12-10 14:03:23 +08:00
|
|
|
img_metas (list[dict]): Image meta info. Default None.
|
2021-11-12 05:39:42 +03:00
|
|
|
cfg (mmcv.Config, Optional): Test / postprocessing configuration,
|
|
|
|
if None, test_cfg would be used. Default None.
|
|
|
|
rescale (bool): If True, return boxes in original image space.
|
|
|
|
Default False.
|
|
|
|
with_nms (bool): If True, do nms before return boxes.
|
|
|
|
Default True.
|
2021-11-15 10:41:27 +08:00
|
|
|
|
2021-11-12 05:39:42 +03:00
|
|
|
Returns:
|
|
|
|
tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor,
|
|
|
|
where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch
|
|
|
|
size and the score between 0 and 1. The shape of the second
|
|
|
|
tensor in the tuple is (N, num_box), and each element
|
|
|
|
represents the class label of the corresponding box.
|
|
|
|
"""
|
2022-09-06 11:48:39 +08:00
|
|
|
# mark pred_maps
|
|
|
|
@mark('yolo_head', inputs=['cls_scores', 'bbox_preds', 'objectnesses'])
|
|
|
|
def __mark_pred_maps(cls_scores, bbox_preds, objectnesses):
|
|
|
|
return cls_scores, bbox_preds, objectnesses
|
|
|
|
|
|
|
|
cls_scores, bbox_preds, objectnesses = __mark_pred_maps(
|
|
|
|
cls_scores, bbox_preds, objectnesses)
|
2021-11-12 05:39:42 +03:00
|
|
|
assert len(cls_scores) == len(bbox_preds) == len(objectnesses)
|
2021-12-10 14:03:23 +08:00
|
|
|
device = cls_scores[0].device
|
2021-11-12 05:39:42 +03:00
|
|
|
cfg = self.test_cfg if cfg is None else cfg
|
|
|
|
batch_size = bbox_preds[0].shape[0]
|
|
|
|
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
|
|
|
|
mlvl_priors = self.prior_generator.grid_priors(
|
2021-12-10 14:03:23 +08:00
|
|
|
featmap_sizes, device=device, with_stride=True)
|
2021-11-12 05:39:42 +03:00
|
|
|
|
|
|
|
flatten_cls_scores = [
|
|
|
|
cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1,
|
|
|
|
self.cls_out_channels)
|
|
|
|
for cls_score in cls_scores
|
|
|
|
]
|
|
|
|
flatten_bbox_preds = [
|
|
|
|
bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4)
|
|
|
|
for bbox_pred in bbox_preds
|
|
|
|
]
|
|
|
|
flatten_objectness = [
|
|
|
|
objectness.permute(0, 2, 3, 1).reshape(batch_size, -1)
|
|
|
|
for objectness in objectnesses
|
|
|
|
]
|
|
|
|
|
|
|
|
cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
|
|
|
|
score_factor = torch.cat(flatten_objectness, dim=1).sigmoid()
|
|
|
|
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
|
|
|
|
flatten_priors = torch.cat(mlvl_priors)
|
2021-12-01 15:21:55 +08:00
|
|
|
bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds)
|
|
|
|
# directly multiply score factor and feed to nms
|
|
|
|
scores = cls_scores * (score_factor.unsqueeze(-1))
|
2022-09-06 11:48:39 +08:00
|
|
|
|
2021-11-12 05:39:42 +03:00
|
|
|
if not with_nms:
|
|
|
|
return bboxes, scores
|
|
|
|
|
|
|
|
deploy_cfg = ctx.cfg
|
2021-11-25 09:57:05 +08:00
|
|
|
post_params = get_post_processing_params(deploy_cfg)
|
2021-11-12 05:39:42 +03:00
|
|
|
max_output_boxes_per_class = post_params.max_output_boxes_per_class
|
|
|
|
iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold)
|
|
|
|
score_threshold = cfg.get('score_thr', post_params.score_threshold)
|
|
|
|
pre_top_k = post_params.pre_top_k
|
|
|
|
keep_top_k = cfg.get('max_per_img', post_params.keep_top_k)
|
|
|
|
return multiclass_nms(bboxes, scores, max_output_boxes_per_class,
|
|
|
|
iou_threshold, score_threshold, pre_top_k,
|
|
|
|
keep_top_k)
|
2022-01-19 13:54:45 +08:00
|
|
|
|
|
|
|
|
|
|
|
@FUNCTION_REWRITER.register_rewriter(
|
|
|
|
func_name='mmdet.models.dense_heads.YOLOXHead.get_bboxes', backend='ncnn')
|
|
|
|
def yolox_head__get_bboxes__ncnn(ctx,
|
|
|
|
self,
|
|
|
|
cls_scores,
|
|
|
|
bbox_preds,
|
|
|
|
objectnesses,
|
|
|
|
img_metas=None,
|
|
|
|
cfg=None,
|
|
|
|
rescale=False,
|
|
|
|
with_nms=True):
|
|
|
|
"""Rewrite `get_bboxes` of YOLOXHead for ncnn backend.
|
|
|
|
|
|
|
|
1. Decode the prior to a box format for ncnn DetectionOutput layer to do
|
|
|
|
the post-processing.
|
|
|
|
2. Batch dimension is not supported by ncnn, but supported by pytorch.
|
|
|
|
The negative value of axis in torch.cat is rewritten as corresponding
|
|
|
|
positive value to avoid axis shift.
|
|
|
|
3. 2-dimension tensor broadcast of `BinaryOps` operator is not supported by
|
|
|
|
ncnn. This function unsqueeze 2-dimension tensor to 3-dimension tensor for
|
|
|
|
correct `BinaryOps` calculation by ncnn.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
ctx: Context that contains original meta information.
|
|
|
|
self: Represent the instance of the original class.
|
|
|
|
cls_scores (list[Tensor]): Classification scores for all
|
|
|
|
scale levels, each is a 4D-tensor, has shape
|
|
|
|
(batch_size, num_priors * num_classes, H, W).
|
|
|
|
bbox_preds (list[Tensor]): Box energies / deltas for all
|
|
|
|
scale levels, each is a 4D-tensor, has shape
|
|
|
|
(batch_size, num_priors * 4, H, W).
|
|
|
|
objectnesses (list[Tensor], Optional): Score factor for
|
|
|
|
all scale level, each is a 4D-tensor, has shape
|
|
|
|
(batch_size, 1, H, W).
|
|
|
|
img_metas (list[dict]): Image meta info. Default None.
|
|
|
|
cfg (mmcv.Config, Optional): Test / postprocessing configuration,
|
|
|
|
if None, test_cfg would be used. Default None.
|
|
|
|
rescale (bool): If True, return boxes in original image space.
|
|
|
|
Default False.
|
|
|
|
with_nms (bool): If True, do nms before return boxes.
|
|
|
|
Default True.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
output__ncnn (Tensor): outputs, shape is [N, num_det, 6].
|
|
|
|
"""
|
|
|
|
from mmdeploy.codebase.mmdet.core.ops import ncnn_detection_output_forward
|
|
|
|
from mmdeploy.utils import get_root_logger
|
2022-02-09 17:27:50 +08:00
|
|
|
from mmdeploy.utils.config_utils import is_dynamic_shape
|
2022-01-19 13:54:45 +08:00
|
|
|
dynamic_flag = is_dynamic_shape(ctx.cfg)
|
|
|
|
if dynamic_flag:
|
|
|
|
logger = get_root_logger()
|
|
|
|
logger.warning('YOLOX does not support dynamic shape with ncnn.')
|
|
|
|
img_height = int(img_metas[0]['img_shape'][0])
|
|
|
|
img_width = int(img_metas[0]['img_shape'][1])
|
|
|
|
|
|
|
|
assert len(cls_scores) == len(bbox_preds) == len(objectnesses)
|
|
|
|
device = cls_scores[0].device
|
|
|
|
cfg = self.test_cfg if cfg is None else cfg
|
|
|
|
batch_size = bbox_preds[0].shape[0]
|
|
|
|
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
|
|
|
|
mlvl_priors = self.prior_generator.grid_priors(
|
|
|
|
featmap_sizes, device=device, with_stride=True)
|
|
|
|
mlvl_priors = [mlvl_prior.unsqueeze(0) for mlvl_prior in mlvl_priors]
|
|
|
|
flatten_priors = torch.cat(mlvl_priors, dim=1)
|
|
|
|
|
|
|
|
flatten_cls_scores = [
|
|
|
|
cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1,
|
|
|
|
self.cls_out_channels)
|
|
|
|
for cls_score in cls_scores
|
|
|
|
]
|
|
|
|
flatten_bbox_preds = [
|
|
|
|
bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4)
|
|
|
|
for bbox_pred in bbox_preds
|
|
|
|
]
|
|
|
|
flatten_objectness = [
|
|
|
|
objectness.permute(0, 2, 3, 1).reshape(batch_size, -1, 1)
|
|
|
|
for objectness in objectnesses
|
|
|
|
]
|
|
|
|
|
|
|
|
cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
|
|
|
|
dummy_cls_scores = torch.zeros(
|
|
|
|
batch_size, cls_scores.shape[-2], 1, device=cls_scores.device)
|
|
|
|
|
|
|
|
batch_mlvl_scores = torch.cat([dummy_cls_scores, cls_scores], dim=2)
|
|
|
|
score_factor = torch.cat(flatten_objectness, dim=1).sigmoid()
|
|
|
|
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
|
|
|
|
assert flatten_priors.shape[-1] == 4, f'yolox needs (B, N, 4) priors, got\
|
|
|
|
(B, N, {flatten_priors.shape[-1]})'
|
|
|
|
prior_box_x1 = (flatten_priors[:, :, 0:1] - flatten_priors[:, :, 2:3] / 2)\
|
|
|
|
/ img_width
|
|
|
|
prior_box_y1 = (flatten_priors[:, :, 1:2] - flatten_priors[:, :, 3:4] / 2)\
|
|
|
|
/ img_height
|
|
|
|
prior_box_x2 = (flatten_priors[:, :, 0:1] + flatten_priors[:, :, 2:3] / 2)\
|
|
|
|
/ img_width
|
|
|
|
prior_box_y2 = (flatten_priors[:, :, 1:2] + flatten_priors[:, :, 3:4] / 2)\
|
|
|
|
/ img_height
|
|
|
|
prior_box_ncnn = torch.cat(
|
|
|
|
[prior_box_x1, prior_box_y1, prior_box_x2, prior_box_y2], dim=2)
|
|
|
|
|
|
|
|
scores = batch_mlvl_scores.permute(0, 2, 1).unsqueeze(3) * \
|
|
|
|
score_factor.permute(0, 2, 1).unsqueeze(3)
|
|
|
|
scores = scores.squeeze(3).permute(0, 2, 1)
|
|
|
|
|
|
|
|
batch_mlvl_bboxes = flatten_bbox_preds.reshape(batch_size, 1, -1)
|
|
|
|
batch_mlvl_scores = scores.reshape(batch_size, 1, -1)
|
|
|
|
batch_mlvl_priors = prior_box_ncnn.reshape(batch_size, 1, -1)
|
|
|
|
batch_mlvl_vars = torch.ones_like(batch_mlvl_priors)
|
|
|
|
batch_mlvl_priors = torch.cat([batch_mlvl_priors, batch_mlvl_vars], dim=1)
|
|
|
|
deploy_cfg = ctx.cfg
|
|
|
|
post_params = get_post_processing_params(deploy_cfg)
|
|
|
|
iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold)
|
|
|
|
score_threshold = cfg.get('score_thr', post_params.score_threshold)
|
|
|
|
pre_top_k = post_params.pre_top_k
|
|
|
|
keep_top_k = cfg.get('max_per_img', post_params.keep_top_k)
|
|
|
|
|
|
|
|
vars = torch.tensor([1, 1, 1, 1], dtype=torch.float32)
|
|
|
|
output__ncnn = ncnn_detection_output_forward(
|
|
|
|
batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_priors,
|
|
|
|
score_threshold, iou_threshold, pre_top_k, keep_top_k,
|
|
|
|
self.num_classes + 1,
|
|
|
|
vars.cpu().detach().numpy())
|
|
|
|
return output__ncnn
|