1. Install and build your target backend. You could refer to [ONNXRuntime-install](../05-supported-backends/onnxruntime.md), [TensorRT-install](../05-supported-backends/tensorrt.md), [ncnn-install](../05-supported-backends/ncnn.md), [PPLNN-install](../05-supported-backends/pplnn.md), [OpenVINO-install](../05-supported-backends/openvino.md) for more information.
2. Install and build your target codebase. You could refer to [MMClassification-install](https://github.com/open-mmlab/mmclassification/blob/master/docs/en/install.md), [MMDetection-install](https://github.com/open-mmlab/mmdetection/blob/master/docs/en/get_started.md), [MMSegmentation-install](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/get_started.md#installation), [MMOCR-install](https://mmocr.readthedocs.io/en/latest/install.html), [MMEditing-install](https://github.com/open-mmlab/mmediting/blob/master/docs/en/install.md).
-`--calib-dataset-cfg` : Only valid in int8 mode. Config used for calibration. If not specified, it will be set to `None` and use "val" dataset in model config for calibration.
-`--device` : The device used for conversion. If not specified, it will be set to `cpu`.
-`--log-level` : To set log level which in `'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'`. If not specified, it will be set to `INFO`.
-`--show` : Whether to show detection outputs.
-`--dump-info` : Whether to output information for SDK.
1. Find model's codebase folder in `configs/`. Example, convert a yolov3 model you need to find `configs/mmdet` folder.
2. Find model's task folder in `configs/codebase_folder/`. Just like yolov3 model, you need to find `configs/mmdet/detection` folder.
3. Find deployment config file in `configs/codebase_folder/task_folder/`. Just like deploy yolov3 model you can use `configs/mmdet/detection/detection_onnxruntime_dynamic.py`.