mmdeploy/docs/zh_cn/01-how-to-build/linux-x86_64.md

351 lines
12 KiB
Markdown
Raw Normal View History

# Linux-x86_64 下构建方式
- [Linux-x86_64 下构建方式](#linux-x86_64-下构建方式)
- [源码安装](#源码安装)
- [安装构建和编译工具链](#安装构建和编译工具链)
- [安装依赖包](#安装依赖包)
- [安装 MMDeploy Converter 依赖](#安装-mmdeploy-converter-依赖)
- [安装 MMDeploy SDK 依赖](#安装-mmdeploy-sdk-依赖)
- [安装推理引擎](#安装推理引擎)
- [编译 MMDeploy](#编译-mmdeploy)
- [编译选项说明](#编译选项说明)
- [编译安装 Model Converter](#编译安装-model-converter)
- [编译自定义算子](#编译自定义算子)
- [安装 Model Converter](#安装-model-converter)
- [编译 SDK 和 Demos](#编译-sdk-和-demos)
______________________________________________________________________
## 源码安装
### 安装构建和编译工具链
- cmake
**保证 cmake的版本 >= 3.14.0**。如果不是,可以参考以下命令安装 3.20.0 版本。如需获取其他版本,请参考[这里](https://cmake.org/install)。
```bash
wget https://github.com/Kitware/CMake/releases/download/v3.20.0/cmake-3.20.0-linux-x86_64.tar.gz
tar -xzvf cmake-3.20.0-linux-x86_64.tar.gz
sudo ln -sf $(pwd)/cmake-3.20.0-linux-x86_64/bin/* /usr/bin/
```
- GCC 7+
MMDeploy SDK 使用了 C++17 特性因此需要安装gcc 7+以上的版本。
```bash
# 如果 Ubuntu 版本 < 18.04
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-7
sudo apt-get install g++-7
```
### 安装依赖包
#### 安装 MMDeploy Converter 依赖
<table class="docutils">
<thead>
<tr>
<th>名称 </th>
<th>安装说明 </th>
</tr>
</thead>
<tbody>
<tr>
<td>conda </td>
<td>请参考<a href="https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html">官方说明</a>安装 conda。<br> 通过 conda 创建并激活 Python 环境。<br>
<pre><code>
conda create -n mmdeploy python=3.7 -y
conda activate mmdeploy
</code></pre>
</td>
</tr>
<tr>
<td>PyTorch <br>(>=1.8.0) </td>
<td>安装 PyTorch要求版本是 torch>=1.8.0。可查看<a href="https://pytorch.org/">官网</a>获取更多详细的安装教程。请确保 PyTorch 要求的 CUDA 版本和您主机的 CUDA 版本是一致<br>
<pre><code>
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge
</code></pre>
</td>
</tr>
<tr>
<td>mmcv-full </td>
<td>参考如下命令安装 mmcv-full。更多安装方式可查看 <a href="https://github.com/open-mmlab/mmcv">mmcv 官网</a><br>
<pre><code>
export cu_version=cu111 # cuda 11.1
export torch_version=torch1.8
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/${cu_version}/${torch_version}/index.html
</code></pre>
</td>
</tr>
</tbody>
</table>
#### 安装 MMDeploy SDK 依赖
如果您只对模型转换感兴趣,那么可以跳过本章节。
<table class="docutils">
<thead>
<tr>
<th>名称 </th>
<th>安装说明 </th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenCV<br>(>=3.0) </td>
<td>
在 Ubuntu 18.04 及以上版本
<pre><code>
sudo apt-get install libopencv-dev
</code></pre>
在 Ubuntu 16.04 中,需要源码安装 OpenCV。您可以参考<a href="https://docs.opencv.org/3.4/d7/d9f/tutorial_linux_install.html">此处</a>.
</td>
</tr>
<tr>
<td>pplcv </td>
<td>pplcv 是 openPPL 开发的高性能图像处理库。 <b>此依赖项为可选项,只有在 cuda 平台下,才需安装。</b><br>
<pre><code>
git clone https://github.com/openppl-public/ppl.cv.git
cd ppl.cv
export PPLCV_DIR=$(pwd)
git checkout tags/v0.7.0 -b v0.7.0
./build.sh cuda
</code></pre>
</td>
</tr>
</tbody>
</table>
#### 安装推理引擎
MMDeploy 的 Model Converter 和 SDK 共享推理引擎。您可以参考下文,选择自己感兴趣的推理引擎安装。
<table class="docutils">
<thead>
<tr>
<th>名称</th>
<th>安装包</th>
<th>安装说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONNXRuntime</td>
<td>onnxruntime<br>(>=1.8.1) </td>
<td>
1. 安装 onnxruntime 的 python 包
<pre><code>pip install onnxruntime==1.8.1</code></pre>
2.<a href="https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1">这里</a>下载 onnxruntime 的预编译包。参考如下命令,解压压缩包并设置环境变量
<pre><code>
wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz
tar -zxvf onnxruntime-linux-x64-1.8.1.tgz
cd onnxruntime-linux-x64-1.8.1
export ONNXRUNTIME_DIR=$(pwd)
export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH
</code></pre>
</td>
</tr>
<tr>
<td rowspan="2">TensorRT<br> </td>
<td>TensorRT <br> </td>
<td>
1. 登录 <a href="https://www.nvidia.com/">NVIDIA 官网</a>,从<a href="https://developer.nvidia.com/nvidia-tensorrt-download">这里</a>选取并下载 TensorRT tar 包。要保证它和您机器的 CPU 架构以及 CUDA 版本是匹配的。<br>
您可以参考这份<a href="https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar">指南</a>安装 TensorRT。<br>
1. 这里也有一份 TensorRT 8.2 GA Update 2 在 Linux x86_64 和 CUDA 11.x 下的安装示例,供您参考。首先,点击<a href="https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/8.2.3.0/tars/tensorrt-8.2.3.0.linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz">此处</a>下载 CUDA 11.x TensorRT 8.2.3.0。然后,根据如下命令,安装并配置 TensorRT 以及相关依赖。
<pre><code>
cd /the/path/of/tensorrt/tar/gz/file
tar -zxvf TensorRT-8.2.3.0.Linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz
pip install TensorRT-8.2.3.0/python/tensorrt-8.2.3.0-cp37-none-linux_x86_64.whl
export TENSORRT_DIR=$(pwd)/TensorRT-8.2.3.0
export LD_LIBRARY_PATH=$TENSORRT_DIR/lib:$LD_LIBRARY_PATH
pip install pycuda
</code></pre>
</td>
</tr>
<tr>
<td>cuDNN </td>
<td>
1.<a href="https://developer.nvidia.com/rdp/cudnn-archive">cuDNN Archive</a> 选择和您环境中 CPU 架构、CUDA 版本以及 TensorRT 版本配套的 cuDNN。以前文 TensorRT 安装说明为例,它需要 cudnn8.2。因此,可以下载 <a href="https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.2.1.32/11.3_06072021/cudnn-11.3-linux-x64-v8.2.1.32.tgz">CUDA 11.x cuDNN 8.2</a><br>
2. 解压压缩包,并设置环境变量
<pre><code>
cd /the/path/of/cudnn/tgz/file
tar -zxvf cudnn-11.3-linux-x64-v8.2.1.32.tgz
export CUDNN_DIR=$(pwd)/cuda
export LD_LIBRARY_PATH=$CUDNN_DIR/lib64:$LD_LIBRARY_PATH
</code></pre>
</td>
</tr>
<tr>
<td>PPL.NN</td>
<td>ppl.nn </td>
<td>
1. 请参考 ppl.nn 的 <a href="https://github.com/openppl-public/ppl.nn/blob/master/docs/en/building-from-source.md">安装文档</a> 编译 ppl.nn并安装 pyppl<br>
2. 将 pplnn 的根目录写入环境变量
<pre><code>
cd ppl.nn
export PPLNN_DIR=$(pwd)
</code></pre>
</td>
</tr>
<tr>
<td>OpenVINO</td>
<td>openvino </td>
<td>1. 安装 <a href="https://docs.openvino.ai/2021.4/get_started.html">OpenVINO</a>
<pre><code>
pip install openvino-dev
</code></pre>
2. <b>可选</b>. 如果您想在 MMDeploy SDK 中使用 OpenVINO请根据<a href="https://docs.openvino.ai/2021.4/openvino_docs_install_guides_installing_openvino_linux.html#install-openvino">指南</a>安装并配置它
</td>
</tr>
<tr>
<td>ncnn </td>
<td>ncnn </td>
<td>1. 请参考 ncnn的 <a href="https://github.com/Tencent/ncnn/wiki/how-to-build">wiki</a> 编译 ncnn。
编译时,请打开<code>-DNCNN_PYTHON=ON</code><br>
2. 将 ncnn 的根目录写入环境变量
<pre><code>
cd ncnn
export NCNN_DIR=$(pwd)
</code></pre>
3. 安装 pyncnn
<pre><code>
cd ${NCNN_DIR}/python
pip install -e .
</code></pre>
</td>
</tr>
<tr>
<td>TorchScript</td>
<td>libtorch</td>
<td>
1. Download libtorch from <a href="https://pytorch.org/get-started/locally/">here</a>. Please note that only <b>Pre-cxx11 ABI</b> and <b>version 1.8.1+</b> on Linux platform are supported by now. For previous versions of libtorch, you can find them in the <a href="https://github.com/pytorch/pytorch/issues/40961#issuecomment-1017317786">issue comment</a>. <br>
2. Take Libtorch1.8.1+cu111 as an example. You can install it like this:
<pre><code>
wget https://download.pytorch.org/libtorch/cu111/libtorch-shared-with-deps-1.8.1%2Bcu111.zip
unzip libtorch-shared-with-deps-1.8.1+cu111.zip
cd libtorch
export Torch_DIR=$(pwd)
export LD_LIBRARY_PATH=$Torch_DIR/lib:$LD_LIBRARY_PATH
</code></pre>
</td>
</tr>
</tbody>
</table>
注意: <br>
如果您想使上述环境变量永久有效,可以把它们加入<code>~/.bashrc</code>。以 ONNXRuntime 的环境变量为例,
```bash
echo '# set env for onnxruntime' >> ~/.bashrc
echo "export ONNXRUNTIME_DIR=${ONNXRUNTIME_DIR}" >> ~/.bashrc
echo "export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc
```
### 编译 MMDeploy
```bash
cd /the/root/path/of/MMDeploy
export MMDEPLOY_DIR=$(pwd)
```
#### 编译 Model Converter
如果您选择了ONNXRuntimeTensorRTncnn 和 torchscript 任一种推理后端,您需要编译对应的自定义算子库。
- **ONNXRuntime** 自定义算子
```bash
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake -DCMAKE_CXX_COMPILER=g++-7 -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} ..
make -j$(nproc) && make install
```
- **TensorRT** 自定义算子
```bash
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake -DCMAKE_CXX_COMPILER=g++-7 -DMMDEPLOY_TARGET_BACKENDS=trt -DTENSORRT_DIR=${TENSORRT_DIR} -DCUDNN_DIR=${CUDNN_DIR} ..
make -j$(nproc) && make install
```
- **ncnn** 自定义算子
```bash
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake -DCMAKE_CXX_COMPILER=g++-7 -DMMDEPLOY_TARGET_BACKENDS=ncnn -Dncnn_DIR=${NCNN_DIR}/build/install/lib/cmake/ncnn ..
make -j$(nproc) && make install
```
- **torchscript** 自定义算子
```bash
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake -DMMDEPLOY_TARGET_BACKENDS=torchscript -DTorch_DIR=${Torch_DIR} ..
make -j$(nproc) && make install
```
参考 [cmake 选项说明](cmake_option.md)
#### 安装 Model Converter
```bash
cd ${MMDEPLOY_DIR}
pip install -e .
```
**注意**
- 有些依赖项是可选的。运行 `pip install -e .` 将进行最小化依赖安装。 如果需安装其他可选依赖项,请执行`pip install -r requirements/optional.txt`
或者 `pip install -e .[optional]`。其中,`[optional]`可以替换为:`all`、`tests`、`build` 或 `optional`
#### 编译 SDK 和 Demos
下文展示2个构建SDK的样例分别用 ONNXRuntime 和 TensorRT 作为推理引擎。您可以参考它们,激活其他的推理引擎。
- cpu + ONNXRuntime
```Bash
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake .. \
-DCMAKE_CXX_COMPILER=g++-7 \
-DMMDEPLOY_BUILD_SDK=ON \
-DMMDEPLOY_BUILD_EXAMPLES=ON \
-DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \
-DMMDEPLOY_TARGET_DEVICES=cpu \
-DMMDEPLOY_TARGET_BACKENDS=ort \
-DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR}
make -j$(nproc) && make install
```
- cuda + TensorRT
```Bash
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake .. \
-DCMAKE_CXX_COMPILER=g++-7 \
-DMMDEPLOY_BUILD_SDK=ON \
-DMMDEPLOY_BUILD_EXAMPLES=ON \
-DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \
-DMMDEPLOY_TARGET_DEVICES="cuda;cpu" \
-DMMDEPLOY_TARGET_BACKENDS=trt \
-Dpplcv_DIR=${PPLCV_DIR}/cuda-build/install/lib/cmake/ppl \
-DTENSORRT_DIR=${TENSORRT_DIR} \
-DCUDNN_DIR=${CUDNN_DIR}
make -j$(nproc) && make install
```