104 lines
3.3 KiB
Plaintext
104 lines
3.3 KiB
Plaintext
|
// modify from
|
||
|
// https://github.com/NVIDIA/TensorRT/tree/master/plugin/batchedNMSPlugin
|
||
|
#include <stdint.h>
|
||
|
|
||
|
#include <cub/cub.cuh>
|
||
|
|
||
|
#include "cublas_v2.h"
|
||
|
#include "kernel.h"
|
||
|
#include "trt_plugin_helper.hpp"
|
||
|
|
||
|
#define CUDA_MEM_ALIGN 256
|
||
|
|
||
|
// ALIGNPTR
|
||
|
int8_t *alignPtr(int8_t *ptr, uintptr_t to) {
|
||
|
uintptr_t addr = (uintptr_t)ptr;
|
||
|
if (addr % to) {
|
||
|
addr += to - addr % to;
|
||
|
}
|
||
|
return (int8_t *)addr;
|
||
|
}
|
||
|
|
||
|
// NEXTWORKSPACEPTR
|
||
|
int8_t *nextWorkspacePtr(int8_t *ptr, uintptr_t previousWorkspaceSize) {
|
||
|
uintptr_t addr = (uintptr_t)ptr;
|
||
|
addr += previousWorkspaceSize;
|
||
|
return alignPtr((int8_t *)addr, CUDA_MEM_ALIGN);
|
||
|
}
|
||
|
|
||
|
// CALCULATE TOTAL WORKSPACE SIZE
|
||
|
size_t calculateTotalWorkspaceSize(size_t *workspaces, int count) {
|
||
|
size_t total = 0;
|
||
|
for (int i = 0; i < count; i++) {
|
||
|
total += workspaces[i];
|
||
|
if (workspaces[i] % CUDA_MEM_ALIGN) {
|
||
|
total += CUDA_MEM_ALIGN - (workspaces[i] % CUDA_MEM_ALIGN);
|
||
|
}
|
||
|
}
|
||
|
return total;
|
||
|
}
|
||
|
|
||
|
using nvinfer1::DataType;
|
||
|
|
||
|
template <unsigned nthds_per_cta>
|
||
|
__launch_bounds__(nthds_per_cta) __global__
|
||
|
void setUniformOffsets_kernel(const int num_segments, const int offset,
|
||
|
int *d_offsets) {
|
||
|
const int idx = blockIdx.x * nthds_per_cta + threadIdx.x;
|
||
|
if (idx <= num_segments) d_offsets[idx] = idx * offset;
|
||
|
}
|
||
|
|
||
|
void setUniformOffsets(cudaStream_t stream, const int num_segments,
|
||
|
const int offset, int *d_offsets) {
|
||
|
const int BS = 32;
|
||
|
const int GS = (num_segments + 1 + BS - 1) / BS;
|
||
|
setUniformOffsets_kernel<BS>
|
||
|
<<<GS, BS, 0, stream>>>(num_segments, offset, d_offsets);
|
||
|
}
|
||
|
|
||
|
size_t detectionForwardBBoxDataSize(int N, int C1, DataType DT_BBOX) {
|
||
|
if (DT_BBOX == DataType::kFLOAT) {
|
||
|
return N * C1 * sizeof(float);
|
||
|
}
|
||
|
|
||
|
printf("Only FP32 type bounding boxes are supported.\n");
|
||
|
return (size_t)-1;
|
||
|
}
|
||
|
|
||
|
size_t detectionForwardBBoxPermuteSize(bool shareLocation, int N, int C1,
|
||
|
DataType DT_BBOX) {
|
||
|
if (DT_BBOX == DataType::kFLOAT) {
|
||
|
return shareLocation ? 0 : N * C1 * sizeof(float);
|
||
|
}
|
||
|
printf("Only FP32 type bounding boxes are supported.\n");
|
||
|
return (size_t)-1;
|
||
|
}
|
||
|
|
||
|
size_t detectionForwardPreNMSSize(int N, int C2) {
|
||
|
ASSERT(sizeof(float) == sizeof(int));
|
||
|
return N * C2 * sizeof(float);
|
||
|
}
|
||
|
|
||
|
size_t detectionForwardPostNMSSize(int N, int numClasses, int topK) {
|
||
|
ASSERT(sizeof(float) == sizeof(int));
|
||
|
return N * numClasses * topK * sizeof(float);
|
||
|
}
|
||
|
|
||
|
size_t detectionInferenceWorkspaceSize(bool shareLocation, int N, int C1,
|
||
|
int C2, int numClasses,
|
||
|
int numPredsPerClass, int topK,
|
||
|
DataType DT_BBOX, DataType DT_SCORE) {
|
||
|
size_t wss[7];
|
||
|
wss[0] = detectionForwardBBoxDataSize(N, C1, DT_BBOX);
|
||
|
wss[1] = detectionForwardBBoxPermuteSize(shareLocation, N, C1, DT_BBOX);
|
||
|
wss[2] = detectionForwardPreNMSSize(N, C2);
|
||
|
wss[3] = detectionForwardPreNMSSize(N, C2);
|
||
|
wss[4] = detectionForwardPostNMSSize(N, numClasses, topK);
|
||
|
wss[5] = detectionForwardPostNMSSize(N, numClasses, topK);
|
||
|
wss[6] =
|
||
|
std::max(sortScoresPerClassWorkspaceSize(N, numClasses, numPredsPerClass,
|
||
|
DT_SCORE),
|
||
|
sortScoresPerImageWorkspaceSize(N, numClasses * topK, DT_SCORE));
|
||
|
return calculateTotalWorkspaceSize(wss, 7);
|
||
|
}
|