mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
52 lines
1.3 KiB
Python
52 lines
1.3 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import argparse
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
from mmdeploy_python import Segmentor
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description='show how to use sdk python api')
|
||
|
parser.add_argument(
|
||
|
'model_path', help='the directory path of mmdeploy model')
|
||
|
parser.add_argument('image_path', help='the path of an image')
|
||
|
parser.add_argument(
|
||
|
'--device-name', default='cpu', help='the name of device, cuda or cpu')
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
def get_palette(num_classes=256):
|
||
|
state = np.random.get_state()
|
||
|
# random color
|
||
|
np.random.seed(42)
|
||
|
palette = np.random.randint(0, 256, size=(num_classes, 3))
|
||
|
np.random.set_state(state)
|
||
|
return [tuple(c) for c in palette]
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args = parse_args()
|
||
|
|
||
|
img = cv2.imread(args.image_path)
|
||
|
|
||
|
segmentor = Segmentor(args.model_path, args.device_name, 0)
|
||
|
seg = segmentor([img])[0]
|
||
|
|
||
|
palette = get_palette()
|
||
|
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
||
|
for label, color in enumerate(palette):
|
||
|
color_seg[seg == label, :] = color
|
||
|
# convert to BGR
|
||
|
color_seg = color_seg[..., ::-1]
|
||
|
|
||
|
img = img * 0.5 + color_seg * 0.5
|
||
|
img = img.astype(np.uint8)
|
||
|
cv2.imwrite('output_segmentation.png', img)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|