mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
53 lines
1.4 KiB
Python
53 lines
1.4 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import argparse
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
from mmdeploy_python import PoseDetector
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description='show how to use sdk python api')
|
||
|
parser.add_argument(
|
||
|
'model_path', help='the directory path of mmdeploy model')
|
||
|
parser.add_argument('image_path', help='the path of an image')
|
||
|
parser.add_argument(
|
||
|
'--bbox',
|
||
|
default=None,
|
||
|
nargs='+',
|
||
|
help='bounding box of an object in format (x, y, w, h)')
|
||
|
parser.add_argument(
|
||
|
'--device-name', default='cpu', help='the name of device, cuda or cpu')
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args = parse_args()
|
||
|
|
||
|
img = cv2.imread(args.image_path)
|
||
|
|
||
|
bboxes = []
|
||
|
if args.bbox is None:
|
||
|
bbox = [0, 0, img.shape[1], img.shape[0]]
|
||
|
else:
|
||
|
# x, y, w, h -> left, top, right, bottom
|
||
|
bbox = np.array(args.bbox, dtype=int)
|
||
|
bbox[2:] += bbox[:2]
|
||
|
bboxes.append(bbox)
|
||
|
|
||
|
detector = PoseDetector(args.model_path, args.device_name, 0)
|
||
|
result = detector([img], [bboxes])[0]
|
||
|
|
||
|
_, point_num, _ = result.shape
|
||
|
points = result[:, :, :2].reshape(point_num, 2)
|
||
|
for [x, y] in points.astype(int):
|
||
|
cv2.circle(img, (x, y), 1, (0, 255, 0), 2)
|
||
|
|
||
|
cv2.imwrite('output_pose.png', img)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|