112 lines
3.5 KiB
Python
112 lines
3.5 KiB
Python
|
import tempfile
|
||
|
|
||
|
import onnx
|
||
|
import pytest
|
||
|
import torch
|
||
|
|
||
|
from mmdeploy.core import register_extra_symbolics
|
||
|
|
||
|
onnx_file = tempfile.NamedTemporaryFile(suffix='onnx').name
|
||
|
|
||
|
|
||
|
@pytest.fixture(autouse=True, scope='module')
|
||
|
def prepare_symbolics():
|
||
|
register_extra_symbolics(cfg=dict(), opset=11)
|
||
|
register_extra_symbolics(cfg=dict(), backend='tensorrt', opset=11)
|
||
|
|
||
|
|
||
|
class OpModel(torch.nn.Module):
|
||
|
|
||
|
def __init__(self, func, *args):
|
||
|
super().__init__()
|
||
|
self._func = func
|
||
|
self._arg_tuple = args
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self._func(x, *self._arg_tuple)
|
||
|
|
||
|
|
||
|
def get_model_onnx_nodes(model, x, onnx_file=onnx_file):
|
||
|
torch.onnx.export(model, x, onnx_file, opset_version=11)
|
||
|
onnx_model = onnx.load(onnx_file)
|
||
|
nodes = onnx_model.graph.node
|
||
|
return nodes
|
||
|
|
||
|
|
||
|
class TestAdaptivePool:
|
||
|
|
||
|
def test_adaptive_pool_1d_global(self):
|
||
|
x = torch.rand(2, 2, 2)
|
||
|
model = OpModel(torch.nn.functional.adaptive_avg_pool1d, [1]).eval()
|
||
|
nodes = get_model_onnx_nodes(model, x)
|
||
|
assert nodes[0].op_type == 'GlobalAveragePool'
|
||
|
|
||
|
def test_adaptive_pool_1d(self):
|
||
|
x = torch.rand(2, 2, 2)
|
||
|
model = OpModel(torch.nn.functional.adaptive_avg_pool1d, [2]).eval()
|
||
|
nodes = get_model_onnx_nodes(model, x)
|
||
|
assert nodes[0].op_type == 'AveragePool'
|
||
|
|
||
|
def test_adaptive_pool_2d_global(self):
|
||
|
x = torch.rand(2, 2, 2)
|
||
|
model = OpModel(torch.nn.functional.adaptive_avg_pool2d, [1, 1]).eval()
|
||
|
nodes = get_model_onnx_nodes(model, x)
|
||
|
assert nodes[0].op_type == 'GlobalAveragePool'
|
||
|
|
||
|
def test_adaptive_pool_2d(self):
|
||
|
x = torch.rand(2, 2, 2)
|
||
|
model = OpModel(torch.nn.functional.adaptive_avg_pool2d, [2, 2]).eval()
|
||
|
nodes = get_model_onnx_nodes(model, x)
|
||
|
assert nodes[0].op_type == 'AveragePool'
|
||
|
|
||
|
def test_adaptive_pool_3d_global(self):
|
||
|
x = torch.rand(2, 2, 2, 2)
|
||
|
model = OpModel(torch.nn.functional.adaptive_avg_pool3d,
|
||
|
[1, 1, 1]).eval()
|
||
|
nodes = get_model_onnx_nodes(model, x)
|
||
|
assert nodes[0].op_type == 'GlobalAveragePool'
|
||
|
|
||
|
def test_adaptive_pool_3d(self):
|
||
|
x = torch.rand(2, 2, 2, 2)
|
||
|
model = OpModel(torch.nn.functional.adaptive_avg_pool3d,
|
||
|
[2, 2, 2]).eval()
|
||
|
nodes = get_model_onnx_nodes(model, x)
|
||
|
assert nodes[0].op_type == 'AveragePool'
|
||
|
|
||
|
|
||
|
def test_grid_sampler():
|
||
|
x = torch.rand(1, 1, 2, 2)
|
||
|
flow = torch.zeros([1, 2, 2, 2])
|
||
|
model = OpModel(torch.grid_sampler, flow, 0, 0, False).eval()
|
||
|
nodes = get_model_onnx_nodes(model, x)
|
||
|
assert nodes[1].op_type == 'grid_sampler'
|
||
|
assert nodes[1].domain == 'mmcv'
|
||
|
|
||
|
|
||
|
def test_instance_norm():
|
||
|
x = torch.rand(1, 2, 2, 2)
|
||
|
model = OpModel(torch.group_norm, 1, torch.rand([2]), torch.rand([2]),
|
||
|
1e-05).eval()
|
||
|
nodes = get_model_onnx_nodes(model, x)
|
||
|
assert nodes[4].op_type == 'TRTInstanceNormalization'
|
||
|
assert nodes[4].domain == 'mmcv'
|
||
|
|
||
|
|
||
|
class TestSqueeze:
|
||
|
|
||
|
def test_squeeze_default(self):
|
||
|
x = torch.rand(1, 1, 2, 2)
|
||
|
model = OpModel(torch.squeeze)
|
||
|
nodes = get_model_onnx_nodes(model, x)
|
||
|
print(nodes)
|
||
|
assert nodes[0].attribute[0].ints == [0, 1]
|
||
|
assert nodes[0].op_type == 'Squeeze'
|
||
|
|
||
|
def test_squeeze(self):
|
||
|
x = torch.rand(1, 1, 2, 2)
|
||
|
model = OpModel(torch.squeeze, 0)
|
||
|
nodes = get_model_onnx_nodes(model, x)
|
||
|
print(nodes)
|
||
|
assert nodes[0].attribute[0].ints == [0]
|
||
|
assert nodes[0].op_type == 'Squeeze'
|