mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
55 lines
1.6 KiB
C++
55 lines
1.6 KiB
C++
|
#include "detector.h"
|
||
|
#include <fstream>
|
||
|
#include <string>
|
||
|
#include <opencv2/highgui/highgui.hpp>
|
||
|
#include <opencv2/imgproc/imgproc.hpp>
|
||
|
|
||
|
int main(int argc, char *argv[]) {
|
||
|
if (argc != 3) {
|
||
|
fprintf(stderr, "usage:\n object_detection model_path image_path\n");
|
||
|
return 1;
|
||
|
}
|
||
|
auto model_path = argv[1];
|
||
|
auto image_path = argv[2];
|
||
|
cv::Mat img = cv::imread(argv[2]);
|
||
|
if (!img.data) {
|
||
|
fprintf(stderr, "failed to load image: %s\n", image_path);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
mm_handle_t detector{};
|
||
|
int status{};
|
||
|
status = mmdeploy_detector_create_by_path(model_path, "cpu", 0, &detector);
|
||
|
if (status != MM_SUCCESS) {
|
||
|
fprintf(stderr, "failed to create detector, code: %d\n", (int) status);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
mm_mat_t mat{img.data, img.rows, img.cols, 3, MM_BGR, MM_INT8};
|
||
|
|
||
|
mm_detect_t *bboxes{};
|
||
|
int *res_count{};
|
||
|
status = mmdeploy_detector_apply(detector, &mat, 1, &bboxes, &res_count);
|
||
|
if (status != MM_SUCCESS) {
|
||
|
fprintf(stderr, "failed to apply detector, code: %d\n", (int) status);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
fprintf(stderr, "bbox_count=%d\n", *res_count);
|
||
|
|
||
|
for (int i = 0; i < *res_count; ++i) {
|
||
|
const auto &box = bboxes[i].bbox;
|
||
|
fprintf(stderr, "box %d, left=%d, top=%d, right=%d, bottom=%d, label=%d, score=%.4f\n",
|
||
|
i, box.left, box.top, box.right, box.bottom, bboxes[i].label_id, bboxes[i].score);
|
||
|
cv::rectangle(img, cv::Point{box.left, box.top}, cv::Point{box.right, box.bottom}, cv::Scalar{0, 255, 0});
|
||
|
}
|
||
|
|
||
|
cv::imwrite("out.png", img);
|
||
|
|
||
|
mmdeploy_detector_release_result(bboxes, res_count, 1);
|
||
|
|
||
|
mmdeploy_detector_destroy(detector);
|
||
|
|
||
|
return 0;
|
||
|
}
|