mmdeploy/docs/en/07-developer-guide/add_backend_ops_unittest.md

109 lines
4.5 KiB
Markdown
Raw Normal View History

# How to add test units for backend ops
This tutorial introduces how to add unit test for backend ops. When you add a custom op under `backend_ops`, you need to add the corresponding test unit. Test units of ops are included in `tests/test_ops/test_ops.py`.
## Prerequisite
- `Compile new ops`: After adding a new custom op, needs to recompile the relevant backend, referring to [build.md](../01-how-to-build/build_from_source.md).
## 1. Add the test program test_XXXX()
You can put unit test for ops in `tests/test_ops/`. Usually, the following program template can be used for your custom op.
### example of ops unit test
```python
@pytest.mark.parametrize('backend', [TEST_TENSORRT, TEST_ONNXRT]) # 1.1 backend test class
@pytest.mark.parametrize('pool_h,pool_w,spatial_scale,sampling_ratio', # 1.2 set parameters of op
[(2, 2, 1.0, 2), (4, 4, 2.0, 4)]) # [(# Examples of op test parameters),...]
def test_roi_align(backend,
pool_h, # set parameters of op
pool_w,
spatial_scale,
sampling_ratio,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = torch.rand(1, 1, 16, 16, dtype=torch.float32) # 1.3 op input data initialization
single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
else:
input = torch.tensor(input_list[0], dtype=torch.float32)
single_roi = torch.tensor(input_list[1], dtype=torch.float32)
from mmcv.ops import roi_align
def wrapped_function(torch_input, torch_rois): # 1.4 initialize op model to be tested
return roi_align(torch_input, torch_rois, (pool_w, pool_h),
spatial_scale, sampling_ratio, 'avg', True)
wrapped_model = WrapFunction(wrapped_function).eval()
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11): # 1.5 call the backend test class interface
backend.run_and_validate(
wrapped_model, [input, single_roi],
'roi_align',
input_names=['input', 'rois'],
output_names=['roi_feat'],
save_dir=save_dir)
```
### 1.1 backend test class
We provide some functions and classes for difference backends, such as `TestOnnxRTExporter`, `TestTensorRTExporter`, `TestNCNNExporter`.
### 1.2 set parameters of op
Set some parameters of op, such as pool_h, pool_w, spatial_scale, sampling_ratio in roi_align. You can set multiple parameters to test op.
### 1.3 op input data initialization
Initialization required input data.
### 1.4 initialize op model to be tested
The model containing custom op usually has two forms.
- `torch model`: Torch model with custom operators. Python code related to op is required, refer to `roi_align` unit test.
- `onnx model`: Onnx model with custom operators. Need to call onnx api to build, refer to `multi_level_roi_align` unit test.
### 1.5 call the backend test class interface
Call the backend test class `run_and_validate` to run and verify the result output by the op on the backend.
```python
def run_and_validate(self,
model,
input_list,
model_name='tmp',
tolerate_small_mismatch=False,
do_constant_folding=True,
dynamic_axes=None,
output_names=None,
input_names=None,
expected_result=None,
save_dir=None):
```
#### Parameter Description
- `model`: Input model to be tested and it can be torch model or any other backend model.
- `input_list`: List of test data, which is mapped to the order of input_names.
- `model_name`: The name of the model.
- `tolerate_small_mismatch`: Whether to allow small errors in the verification of results.
- `do_constant_folding`: Whether to use constant light folding to optimize the model.
- `dynamic_axes`: If you need to use dynamic dimensions, enter the dimension information.
- `output_names`: The node name of the output node.
- `input_names`: The node name of the input node.
- `expected_result`: Expected ground truth values for verification.
- `save_dir`: The folder used to save the output files.
## 2. Test Methods
Use pytest to call the test function to test ops.
```bash
pytest tests/test_ops/test_ops.py::test_XXXX
```