mmdeploy/tests/test_ops/utils.py

136 lines
4.7 KiB
Python
Raw Normal View History

import os
import tempfile
import mmcv
import onnx
import pytest
import torch
import mmdeploy.apis.onnxruntime as ort_apis
import mmdeploy.apis.tensorrt as trt_apis
from mmdeploy.utils.test import assert_allclose
class TestOnnxRTExporter:
def check_env(self):
if not ort_apis.is_available():
pytest.skip('Custom ops of ONNXRuntime are not compiled.')
def run_and_validate(self,
model,
inputs_list,
model_name='tmp',
tolerate_small_mismatch=False,
do_constant_folding=True,
dynamic_axes=None,
output_names=None,
input_names=None,
work_dir=None):
if not work_dir:
onnx_file_path = tempfile.NamedTemporaryFile().name
else:
onnx_file_path = os.path.join(work_dir, model_name + '.onnx')
with torch.no_grad():
torch.onnx.export(
model,
tuple(inputs_list),
onnx_file_path,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
do_constant_folding=do_constant_folding,
dynamic_axes=dynamic_axes,
opset_version=11)
with torch.no_grad():
model_outputs = model(*inputs_list)
if isinstance(model_outputs, torch.Tensor):
model_outputs = [model_outputs]
else:
model_outputs = list(model_outputs)
onnx_model = ort_apis.ORTWrapper(onnx_file_path, 0, output_names)
with torch.no_grad():
onnx_outputs = onnx_model.forward(
dict(zip(input_names, inputs_list)))
assert_allclose(model_outputs, onnx_outputs, tolerate_small_mismatch)
class TestTensorRTExporter:
def check_env(self):
if not trt_apis.is_available():
pytest.skip(
'TensorRT is not installed or custom ops are not compiled.')
if not torch.cuda.is_available():
pytest.skip('CUDA is not available.')
def run_and_validate(self,
model,
inputs_list,
model_name='tmp',
tolerate_small_mismatch=False,
do_constant_folding=True,
dynamic_axes=None,
output_names=None,
input_names=None,
work_dir=None):
if not work_dir:
onnx_file_path = tempfile.NamedTemporaryFile().name
trt_file_path = tempfile.NamedTemporaryFile().name
else:
onnx_file_path = os.path.join(work_dir, model_name + '.onnx')
trt_file_path = os.path.join(work_dir, model_name + '.trt')
with torch.no_grad():
torch.onnx.export(
model,
tuple(inputs_list),
onnx_file_path,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
do_constant_folding=do_constant_folding,
dynamic_axes=dynamic_axes,
opset_version=11)
deploy_cfg = mmcv.Config(
dict(
backend='tensorrt',
tensorrt_params=dict(model_params=[
dict(
opt_shape_dict=dict(
zip(input_names, [[
list(data.shape),
list(data.shape),
list(data.shape)
] for data in inputs_list])),
max_workspace_size=0)
])))
onnx_model = onnx.load(onnx_file_path)
trt_apis.onnx2tensorrt(
os.path.dirname(trt_file_path),
trt_file_path,
0,
deploy_cfg=deploy_cfg,
onnx_model=onnx_model)
with torch.no_grad():
model_outputs = model(*inputs_list)
inputs_list = [data.cuda() for data in inputs_list]
if isinstance(model_outputs, torch.Tensor):
model_outputs = [model_outputs.cuda()]
else:
model_outputs = [tensor.cuda() for tensor in model_outputs]
trt_model = trt_apis.TRTWrapper(trt_file_path)
with torch.no_grad():
trt_outputs = trt_model(dict(zip(input_names, inputs_list)))
trt_outputs = [trt_outputs[name] for name in output_names]
assert_allclose(model_outputs, trt_outputs, tolerate_small_mismatch)