mmdeploy/docs/zh_cn/03-benchmark/quantization.md

27 lines
1.3 KiB
Markdown
Raw Normal View History

# 量化测试结果
目前 mmdeploy 支持 ncnn 量化
## ncnn 量化
### 分类任务
|model|dataset|fp32 top-1 (%)|int8 top-1 (%)|
|:-:|:-:|:-:|:-:|
|[ResNet-18](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb16_cifar10.py)|Cifar10|94.82|94.83|
|[ResNeXt-32x4d-50](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py)|ImageNet-1k|77.90|78.20*|
|[MobileNet V2](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py)|ImageNet-1k|71.86|71.43*|
|[HRNet-W18*](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py)|ImageNet-1k|76.75|76.25*|
备注:
* 因为 imagenet-1k 数据量很大、ncnn 未正式发布 Vulkan int8 版本,考虑到 CPU 运行时间仅用部分测试集4000/50000
* 量化后精度会有差异,分类模型涨点 1% 以内是正常情况
### OCR 检测任务
|model|dataset|fp32 hmean|int8 hmean|
|:-:|:-:|:-:|:-:|
|[PANet](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py)|ICDAR2015|0.795|0.792 @thr=0.9|
备注:[mmocr](https://github.com/open-mmlab/mmocr) 使用 `shapely` 计算 IoU实现方法会导致轻微的精度差异