2022-09-24 18:05:24 +08:00
|
|
|
|
# MMDetection 模型部署
|
|
|
|
|
|
2022-11-11 10:28:13 +08:00
|
|
|
|
- [MMDetection 模型部署](#mmdetection-模型部署)
|
|
|
|
|
- [安装](#安装)
|
|
|
|
|
- [安装 mmdet](#安装-mmdet)
|
|
|
|
|
- [安装 mmdeploy](#安装-mmdeploy)
|
|
|
|
|
- [模型转换](#模型转换)
|
|
|
|
|
- [模型规范](#模型规范)
|
|
|
|
|
- [模型推理](#模型推理)
|
|
|
|
|
- [后端模型推理](#后端模型推理)
|
|
|
|
|
- [SDK 模型推理](#sdk-模型推理)
|
|
|
|
|
- [模型支持列表](#模型支持列表)
|
2022-09-24 18:05:24 +08:00
|
|
|
|
|
|
|
|
|
______________________________________________________________________
|
|
|
|
|
|
|
|
|
|
[MMDetection](https://github.com/open-mmlab/mmdetection) ,又称 `mmdet`, 是一个基于 PyTorch 的目标检测开源工具箱。它是 [OpenMMLab](https://openmmlab.com/) 项目的一部分。
|
|
|
|
|
|
|
|
|
|
## 安装
|
|
|
|
|
|
|
|
|
|
### 安装 mmdet
|
|
|
|
|
|
|
|
|
|
请参考[官网安装指南](https://mmdetection.readthedocs.io/en/3.x/get_started.html)。
|
|
|
|
|
|
|
|
|
|
### 安装 mmdeploy
|
|
|
|
|
|
|
|
|
|
mmdeploy 有以下几种安装方式:
|
|
|
|
|
|
|
|
|
|
**方式一:** 安装预编译包
|
|
|
|
|
|
2022-11-11 10:28:13 +08:00
|
|
|
|
> 待 mmdeploy 正式发布 1.x,再补充
|
2022-09-24 18:05:24 +08:00
|
|
|
|
|
|
|
|
|
**方式二:** 一键式脚本安装
|
|
|
|
|
|
|
|
|
|
如果部署平台是 **Ubuntu 18.04 及以上版本**, 请参考[脚本安装说明](../01-how-to-build/build_from_script.md),完成安装过程。
|
|
|
|
|
比如,以下命令可以安装 mmdeploy 以及配套的推理引擎——`ONNX Runtime`.
|
|
|
|
|
|
|
|
|
|
```shell
|
2022-11-11 10:28:13 +08:00
|
|
|
|
git clone --recursive -b 1.x https://github.com/open-mmlab/mmdeploy.git
|
2022-09-24 18:05:24 +08:00
|
|
|
|
cd mmdeploy
|
|
|
|
|
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
|
|
|
|
|
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
|
|
|
|
|
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**方式三:** 源码安装
|
|
|
|
|
|
|
|
|
|
在方式一、二都满足不了的情况下,请参考[源码安装说明](../01-how-to-build/build_from_source.md) 安装 mmdeploy 以及所需推理引擎。
|
|
|
|
|
|
|
|
|
|
## 模型转换
|
|
|
|
|
|
2022-11-11 10:28:13 +08:00
|
|
|
|
你可以使用 [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/blob/1.x/tools/deploy.py) 把 mmdet 模型一键式转换为推理后端模型。
|
2022-12-08 16:13:51 +08:00
|
|
|
|
该工具的详细使用说明请参考[这里](https://github.com/open-mmlab/mmdeploy/tree/1.x/docs/en/02-how-to-run/convert_model.md#usage).
|
2022-09-24 18:05:24 +08:00
|
|
|
|
|
|
|
|
|
以下,我们将演示如何把 `Faster R-CNN` 转换为 onnx 模型。
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
cd mmdeploy
|
|
|
|
|
# download faster r-cnn model from mmdet model zoo
|
|
|
|
|
mim download mmdet --config faster-rcnn_r50_fpn_1x_coco --dest .
|
|
|
|
|
# convert mmdet model to onnxruntime model with dynamic shape
|
|
|
|
|
python tools/deploy.py \
|
|
|
|
|
configs/mmdet/detection/detection_onnxruntime_dynamic.py \
|
|
|
|
|
faster-rcnn_r50_fpn_1x_coco.py \
|
|
|
|
|
faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
|
|
|
|
|
demo/resources/det.jpg \
|
|
|
|
|
--work-dir mmdeploy_models/mmdet/ort \
|
|
|
|
|
--device cpu \
|
|
|
|
|
--show \
|
|
|
|
|
--dump-info
|
|
|
|
|
```
|
|
|
|
|
|
2022-11-11 10:28:13 +08:00
|
|
|
|
转换的关键之一是使用正确的配置文件。项目中已内置了各后端部署[配置文件](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmdet)。
|
2022-09-24 18:05:24 +08:00
|
|
|
|
文件的命名模式是:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
其中:
|
|
|
|
|
|
|
|
|
|
- **{task}:** mmdet 中的任务
|
|
|
|
|
|
|
|
|
|
mmdet 任务有2种:物体检测(detection)、实例分割(instance-seg)。例如,`RetinaNet`、`Faster R-CNN`、`DETR`等属于前者。`Mask R-CNN`、`SOLO`等属于后者。更多`模型-任务`的划分,请参考章节[模型支持列表](#模型支持列表)。
|
|
|
|
|
|
|
|
|
|
**请务必**使用 `detection/detection_*.py` 转换检测模型,使用 `instance-seg/instance-seg_*.py` 转换实例分割模型。
|
|
|
|
|
|
|
|
|
|
- **{backend}:** 推理后端名称。比如,onnxruntime、tensorrt、pplnn、ncnn、openvino、coreml 等等
|
|
|
|
|
|
|
|
|
|
- **{precision}:** 推理精度。比如,fp16、int8。不填表示 fp32
|
|
|
|
|
|
|
|
|
|
- **{static | dynamic}:** 动态、静态 shape
|
|
|
|
|
|
|
|
|
|
- **{shape}:** 模型输入的 shape 或者 shape 范围
|
|
|
|
|
|
|
|
|
|
在上例中,你也可以把 `Faster R-CNN` 转为其他后端模型。比如使用`detection_tensorrt-fp16_dynamic-320x320-1344x1344.py`,把模型转为 tensorrt-fp16 模型。
|
|
|
|
|
|
|
|
|
|
```{tip}
|
|
|
|
|
当转 tensorrt 模型时, --device 需要被设置为 "cuda"
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 模型规范
|
|
|
|
|
|
|
|
|
|
在使用转换后的模型进行推理之前,有必要了解转换结果的结构。 它存放在 `--work-dir` 指定的路路径下。
|
|
|
|
|
|
|
|
|
|
上例中的`mmdeploy_models/mmdet/ort`,结构如下:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
mmdeploy_models/mmdet/ort
|
|
|
|
|
├── deploy.json
|
|
|
|
|
├── detail.json
|
|
|
|
|
├── end2end.onnx
|
|
|
|
|
└── pipeline.json
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
重要的是:
|
|
|
|
|
|
|
|
|
|
- **end2end.onnx**: 推理引擎文件。可用 ONNX Runtime 推理
|
|
|
|
|
- \***.json**: mmdeploy SDK 推理所需的 meta 信息
|
|
|
|
|
|
|
|
|
|
整个文件夹被定义为**mmdeploy SDK model**。换言之,**mmdeploy SDK model**既包括推理引擎,也包括推理 meta 信息。
|
|
|
|
|
|
|
|
|
|
## 模型推理
|
|
|
|
|
|
|
|
|
|
## 后端模型推理
|
|
|
|
|
|
|
|
|
|
以上述模型转换后的 `end2end.onnx` 为例,你可以使用如下代码进行推理:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
from mmdeploy.apis.utils import build_task_processor
|
|
|
|
|
from mmdeploy.utils import get_input_shape, load_config
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
deploy_cfg = 'configs/mmdet/detection/detection_onnxruntime_dynamic.py'
|
|
|
|
|
model_cfg = './faster-rcnn_r50_fpn_1x_coco.py'
|
|
|
|
|
device = 'cpu'
|
|
|
|
|
backend_model = ['./mmdeploy_models/mmdet/ort/end2end.onnx']
|
|
|
|
|
image = './demo/resources/det.jpg'
|
|
|
|
|
|
|
|
|
|
# read deploy_cfg and model_cfg
|
|
|
|
|
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
|
|
|
|
|
|
|
|
|
|
# build task and backend model
|
|
|
|
|
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
|
|
|
|
|
model = task_processor.build_backend_model(backend_model)
|
|
|
|
|
|
|
|
|
|
# process input image
|
|
|
|
|
input_shape = get_input_shape(deploy_cfg)
|
|
|
|
|
model_inputs, _ = task_processor.create_input(image, input_shape)
|
|
|
|
|
|
|
|
|
|
# do model inference
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
result = model.test_step(model_inputs)
|
|
|
|
|
|
|
|
|
|
# visualize results
|
|
|
|
|
task_processor.visualize(
|
|
|
|
|
image=image,
|
|
|
|
|
model=model,
|
|
|
|
|
result=result[0],
|
|
|
|
|
window_name='visualize',
|
|
|
|
|
output_file='output_detection.png')
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## SDK 模型推理
|
|
|
|
|
|
|
|
|
|
你也可以参考如下代码,对 SDK model 进行推理:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
from mmdeploy_python import Detector
|
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
|
|
img = cv2.imread('./demo/resources/det.jpg')
|
|
|
|
|
|
|
|
|
|
# create a detector
|
|
|
|
|
detector = Detector(model_path='./mmdeploy_models/mmdet/ort', device_name='cpu', device_id=0)
|
|
|
|
|
# perform inference
|
|
|
|
|
bboxes, labels, masks = detector(img)
|
|
|
|
|
|
|
|
|
|
# visualize inference result
|
|
|
|
|
indices = [i for i in range(len(bboxes))]
|
|
|
|
|
for index, bbox, label_id in zip(indices, bboxes, labels):
|
|
|
|
|
[left, top, right, bottom], score = bbox[0:4].astype(int), bbox[4]
|
|
|
|
|
if score < 0.3:
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))
|
|
|
|
|
|
|
|
|
|
cv2.imwrite('output_detection.png', img)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
除了python API,mmdeploy SDK 还提供了诸如 C、C++、C#、Java等多语言接口。
|
2022-12-08 16:13:51 +08:00
|
|
|
|
你可以参考[样例](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo)学习其他语言接口的使用方法。
|
2022-09-24 18:05:24 +08:00
|
|
|
|
|
|
|
|
|
## 模型支持列表
|
|
|
|
|
|
2022-12-22 00:02:25 +08:00
|
|
|
|
| Model | Task | OnnxRuntime | TensorRT | ncnn | PPLNN | OpenVINO |
|
|
|
|
|
| :-------------------------------------------------------------------------------------------: | :-------------------: | :---------: | :------: | :--: | :---: | :------: |
|
|
|
|
|
| [ATSS](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/atss) | ObjectDetection | Y | Y | N | N | Y |
|
|
|
|
|
| [FCOS](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/fcos) | ObjectDetection | Y | Y | Y | N | Y |
|
|
|
|
|
| [FoveaBox](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/foveabox) | ObjectDetection | Y | N | N | N | Y |
|
|
|
|
|
| [FSAF](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/fsaf) | ObjectDetection | Y | Y | Y | Y | Y |
|
|
|
|
|
| [RetinaNet](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/retinanet) | ObjectDetection | Y | Y | Y | Y | Y |
|
|
|
|
|
| [SSD](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/ssd) | ObjectDetection | Y | Y | Y | N | Y |
|
|
|
|
|
| [VFNet](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/vfnet) | ObjectDetection | N | N | N | N | Y |
|
|
|
|
|
| [YOLOv3](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/yolo) | ObjectDetection | Y | Y | Y | N | Y |
|
|
|
|
|
| [YOLOX](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/yolox) | ObjectDetection | Y | Y | Y | N | Y |
|
|
|
|
|
| [Cascade R-CNN](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/cascade_rcnn) | ObjectDetection | Y | Y | N | Y | Y |
|
|
|
|
|
| [Faster R-CNN](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/faster_rcnn) | ObjectDetection | Y | Y | Y | Y | Y |
|
|
|
|
|
| [Faster R-CNN + DCN](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/faster_rcnn) | ObjectDetection | Y | Y | Y | Y | Y |
|
|
|
|
|
| [GFL](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/gfl) | ObjectDetection | Y | Y | N | ? | Y |
|
|
|
|
|
| [RepPoints](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/reppoints) | ObjectDetection | N | Y | N | ? | Y |
|
|
|
|
|
| [DETR](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/detr) | ObjectDetection | Y | Y | N | ? | Y |
|
|
|
|
|
| [CenterNet](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/centernet) | Object Detection | Y | Y | N | ? | ? |
|
|
|
|
|
| [Cascade Mask R-CNN](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/cascade_rcnn) | InstanceSegmentation | Y | N | N | N | Y |
|
|
|
|
|
| [Mask R-CNN](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/mask_rcnn) | InstanceSegmentation | Y | Y | N | N | Y |
|
|
|
|
|
| [Swin Transformer](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/swin) | InstanceSegmentation | Y | Y | N | N | N |
|
|
|
|
|
| [SOLO](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/solo) | Instance Segmentation | N | N | N | N | Y |
|