109 lines
4.5 KiB
Markdown
109 lines
4.5 KiB
Markdown
|
# How to add test units for backend ops
|
|||
|
|
|||
|
This tutorial introduces how to add unit test for backend ops. When you add a custom op under `backend_ops`, you need to add the corresponding test unit. Test units of ops are included in `tests/test_ops/test_ops.py`.
|
|||
|
|
|||
|
## Prerequisite
|
|||
|
|
|||
|
- `Compile new ops`: After adding a new custom op, needs to recompile the relevant backend, referring to [build.md](../01-how-to-build/build_from_source.md).
|
|||
|
|
|||
|
## 1. Add the test program test_XXXX()
|
|||
|
|
|||
|
You can put unit test for ops in `tests/test_ops/`. Usually, the following program template can be used for your custom op.
|
|||
|
|
|||
|
### example of ops unit test
|
|||
|
|
|||
|
```python
|
|||
|
@pytest.mark.parametrize('backend', [TEST_TENSORRT, TEST_ONNXRT]) # 1.1 backend test class
|
|||
|
@pytest.mark.parametrize('pool_h,pool_w,spatial_scale,sampling_ratio', # 1.2 set parameters of op
|
|||
|
[(2, 2, 1.0, 2), (4, 4, 2.0, 4)]) # [(# Examples of op test parameters),...]
|
|||
|
def test_roi_align(backend,
|
|||
|
pool_h, # set parameters of op
|
|||
|
pool_w,
|
|||
|
spatial_scale,
|
|||
|
sampling_ratio,
|
|||
|
input_list=None,
|
|||
|
save_dir=None):
|
|||
|
backend.check_env()
|
|||
|
|
|||
|
if input_list is None:
|
|||
|
input = torch.rand(1, 1, 16, 16, dtype=torch.float32) # 1.3 op input data initialization
|
|||
|
single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
|
|||
|
else:
|
|||
|
input = torch.tensor(input_list[0], dtype=torch.float32)
|
|||
|
single_roi = torch.tensor(input_list[1], dtype=torch.float32)
|
|||
|
|
|||
|
from mmcv.ops import roi_align
|
|||
|
|
|||
|
def wrapped_function(torch_input, torch_rois): # 1.4 initialize op model to be tested
|
|||
|
return roi_align(torch_input, torch_rois, (pool_w, pool_h),
|
|||
|
spatial_scale, sampling_ratio, 'avg', True)
|
|||
|
|
|||
|
wrapped_model = WrapFunction(wrapped_function).eval()
|
|||
|
|
|||
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11): # 1.5 call the backend test class interface
|
|||
|
backend.run_and_validate(
|
|||
|
wrapped_model, [input, single_roi],
|
|||
|
'roi_align',
|
|||
|
input_names=['input', 'rois'],
|
|||
|
output_names=['roi_feat'],
|
|||
|
save_dir=save_dir)
|
|||
|
```
|
|||
|
|
|||
|
### 1.1 backend test class
|
|||
|
|
|||
|
We provide some functions and classes for difference backends, such as `TestOnnxRTExporter`, `TestTensorRTExporter`, `TestNCNNExporter`.
|
|||
|
|
|||
|
### 1.2 set parameters of op
|
|||
|
|
|||
|
Set some parameters of op, such as ’pool_h‘, ’pool_w‘, ’spatial_scale‘, ’sampling_ratio‘ in roi_align. You can set multiple parameters to test op.
|
|||
|
|
|||
|
### 1.3 op input data initialization
|
|||
|
|
|||
|
Initialization required input data.
|
|||
|
|
|||
|
### 1.4 initialize op model to be tested
|
|||
|
|
|||
|
The model containing custom op usually has two forms.
|
|||
|
|
|||
|
- `torch model`: Torch model with custom operators. Python code related to op is required, refer to `roi_align` unit test.
|
|||
|
- `onnx model`: Onnx model with custom operators. Need to call onnx api to build, refer to `multi_level_roi_align` unit test.
|
|||
|
|
|||
|
### 1.5 call the backend test class interface
|
|||
|
|
|||
|
Call the backend test class `run_and_validate` to run and verify the result output by the op on the backend.
|
|||
|
|
|||
|
```python
|
|||
|
def run_and_validate(self,
|
|||
|
model,
|
|||
|
input_list,
|
|||
|
model_name='tmp',
|
|||
|
tolerate_small_mismatch=False,
|
|||
|
do_constant_folding=True,
|
|||
|
dynamic_axes=None,
|
|||
|
output_names=None,
|
|||
|
input_names=None,
|
|||
|
expected_result=None,
|
|||
|
save_dir=None):
|
|||
|
```
|
|||
|
|
|||
|
#### Parameter Description
|
|||
|
|
|||
|
- `model`: Input model to be tested and it can be torch model or any other backend model.
|
|||
|
- `input_list`: List of test data, which is mapped to the order of input_names.
|
|||
|
- `model_name`: The name of the model.
|
|||
|
- `tolerate_small_mismatch`: Whether to allow small errors in the verification of results.
|
|||
|
- `do_constant_folding`: Whether to use constant light folding to optimize the model.
|
|||
|
- `dynamic_axes`: If you need to use dynamic dimensions, enter the dimension information.
|
|||
|
- `output_names`: The node name of the output node.
|
|||
|
- `input_names`: The node name of the input node.
|
|||
|
- `expected_result`: Expected ground truth values for verification.
|
|||
|
- `save_dir`: The folder used to save the output files.
|
|||
|
|
|||
|
## 2. Test Methods
|
|||
|
|
|||
|
Use pytest to call the test function to test ops.
|
|||
|
|
|||
|
```bash
|
|||
|
pytest tests/test_ops/test_ops.py::test_XXXX
|
|||
|
```
|