mmdeploy/csrc/apis/c/text_detector.h

64 lines
3.0 KiB
C
Raw Normal View History

Merge sdk (#251) * check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00
// Copyright (c) OpenMMLab. All rights reserved.
#ifndef MMDEPLOY_TEXT_DETECTOR_H
#define MMDEPLOY_TEXT_DETECTOR_H
#include "common.h"
typedef struct mm_text_detect_t {
mm_pointi_t bbox[4]; ///< a text bounding box of which the vertex are in clock-wise
float score;
} mm_text_detect_t;
MM_SDK_API int mmdeploy_text_detector_create(mm_model_t model, const char* device_name,
int device_id, mm_handle_t* handle);
/**
* @brief Create text-detector's handle
* @param config text-detector's config which is supposed to be json. Refer to
* `@PROJECT_ROOT_DIR/config/text-detector/dbnet_config.json`
* @param device_name name of device, such as "cpu", "cuda" and etc.
* @param device_id id of device.
* @param handle instance of a text-detector
* @return status of creating text-detector's handle
*/
MM_SDK_API int mmdeploy_text_detector_create_by_path(const char* model_path,
const char* device_name, int device_id,
mm_handle_t* handle);
/**
* @brief Apply text-detector to batch images and get their inference results
* @param handle text-detector's handle made by `mmdeploy_text_detector_create_by_path`
* @param mats batch images
* @param mat_count number of images in a batch
* @param results a consecutive buffer to save text detection results of each
* image. Its length equals to `mat_count` if this function returns success. The buffer should be
* destroyed by calling `mmdeploy_text_detector_release_result`.
* @param result_count a consecutive buffer to save the number of detection
* results of each image. Its length equals to `mat_count` if this function returns success. It
* should be destroyed by calling `mmdeploy_detector_release_result`
* @return status of inference
*/
MM_SDK_API int mmdeploy_text_detector_apply(mm_handle_t handle, const mm_mat_t* mats, int mat_count,
mm_text_detect_t** results, int** result_count);
/** @brief release the inference result buffer
* @param results a consecutive buffer to save images' text detection results,
* which is created by `mmdeploy_text_detector_apply`
* @param result_count a consecutive buffer to save the size of text detection
* results of each image in a batch. `result_count[i]` represents the text bbox number in the `i`-th
* input image, i.e. `mats[i]` in `mmdeploy_text_detector_apply`
* @param count the length of buffer `results`, which is the same as `mat_count` in
* `mmdeploy_text_detector_apply`
*/
MM_SDK_API void mmdeploy_text_detector_release_result(mm_text_detect_t* results,
const int* result_count, int count);
/**
* @brief destroy text-detector's handle
* @param handle text-detector's handle made by `mmdeploy_text_detector_create_by_path`
*/
MM_SDK_API void mmdeploy_text_detector_destroy(mm_handle_t handle);
#endif // MMDEPLOY_TEXT_DETECTOR_H