mmdeploy/csrc/graph/task.cpp

116 lines
3.5 KiB
C++
Raw Normal View History

Merge sdk (#251) * check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00
// Copyright (c) OpenMMLab. All rights reserved.
#include "graph/task.h"
#include "archive/value_archive.h"
#include "core/graph.h"
#include "core/operator.h"
#include "graph/common.h"
namespace mmdeploy::graph {
static int GetDepth(const Value& input) {
if (input.is_array() && input.size() > 0) {
return GetDepth(input[0]) + 1;
}
return input.is_array();
}
// all args are array of the same length
static size_t GetBatchSize(const Value& args) {
size_t batch_size = 0;
for (const auto& x : args) {
if (x.is_array()) {
if (!batch_size) {
batch_size = x.size();
} else if (batch_size != x.size()) {
return 0;
}
} else {
return 0;
}
}
return batch_size;
}
unique_ptr<Task> Task::Create(const Value& config) {
try {
auto inst = std::make_unique<Task>();
auto module = CreateFromRegistry<Module>(config, "module");
if (!module) {
ERROR("failed to create task: {}", config);
return nullptr;
}
inst->module_ = std::move(module).value();
inst->name_ = config.value("name", string{});
inst->is_batched_ = config.value("is_batched", false);
inst->is_thread_safe_ = config.value("is_thread_safe", false);
from_value(config["input"], inst->inputs_);
from_value(config["output"], inst->outputs_);
return inst;
} catch (...) {
return nullptr;
}
}
void Task::Build(TaskGraph& graph) {
auto handle = graph.Add([this](Context& ctx) -> Result<void> {
OUTCOME_TRY(auto args, Keys2Idxs(ctx.current(), inputs_));
Value rets = Value::kArray;
auto batch_size = GetBatchSize(args);
// ERROR("name: {}, is_batched: {}, INPUT batch_size: {}", name_, is_batched_, batch_size);
if (!is_batched_ && batch_size) {
for (int i = 0; i < outputs_.size(); ++i) {
rets.push_back(Value::kArray);
}
if (!is_thread_safe_) {
for (int i = 0; i < batch_size; ++i) {
Value sample = Value::kArray;
for (const auto& a : args) {
sample.push_back(a[i]);
}
OUTCOME_TRY(auto ret, module_->Process(sample));
for (int j = 0; j < ret.size(); ++j) {
rets[j].push_back(std::move(ret[j]));
}
}
} else {
std::vector<std::function<Result<Value>()>> tasks;
tasks.reserve(batch_size);
OUTCOME_TRY(auto batch_args, DistribAA(args));
for (int sample_id = 0; sample_id < batch_size; ++sample_id) {
tasks.emplace_back([&, sample_id]() -> Result<Value> {
return module_->Process(batch_args[sample_id]);
});
}
auto batch_rets = ctx.Execute(tasks);
for (auto& batch_ret : batch_rets) {
OUTCOME_TRY(auto ret, std::move(batch_ret));
for (int j = 0; j < rets.size(); ++j) {
rets[j].push_back(std::move(ret[j]));
}
}
}
} else {
OUTCOME_TRY(rets, module_->Process(args));
}
// ERROR("name: {}, is_batched: {}, OUTPUT batch_size: {}", name_, is_batched_,
// GetBatchSize(rets));
OUTCOME_TRY(Idxs2Keys(std::move(rets), outputs_, ctx.current()));
return success();
});
handle->set_name(name_);
}
class TaskNodeCreator : public Creator<Node> {
public:
const char* GetName() const override { return "Task"; }
int GetVersion() const override { return 0; }
std::unique_ptr<Node> Create(const Value& value) override { return Task::Create(value); }
};
REGISTER_MODULE(Node, TaskNodeCreator);
} // namespace mmdeploy::graph