52 lines
5.2 KiB
Markdown
52 lines
5.2 KiB
Markdown
|
# TVM 测试
|
||
|
|
||
|
## 支持模型列表
|
||
|
|
||
|
| Model | Codebase | Model config |
|
||
|
| :---------------- | :--------------- | :---------------------------------------------------------------------------------------------: |
|
||
|
| RetinaNet | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet) |
|
||
|
| Faster R-CNN | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn) |
|
||
|
| YOLOv3 | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo) |
|
||
|
| YOLOX | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox) |
|
||
|
| Mask R-CNN | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn) |
|
||
|
| SSD | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd) |
|
||
|
| ResNet | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/resnet) |
|
||
|
| ResNeXt | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/resnext) |
|
||
|
| SE-ResNet | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/seresnet) |
|
||
|
| MobileNetV2 | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/mobilenet_v2) |
|
||
|
| ShuffleNetV1 | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/shufflenet_v1) |
|
||
|
| ShuffleNetV2 | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/shufflenet_v2) |
|
||
|
| VisionTransformer | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/vision_transformer) |
|
||
|
| FCN | MMSegmentation | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/fcn) |
|
||
|
| PSPNet | MMSegmentation | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/pspnet) |
|
||
|
| DeepLabV3 | MMSegmentation | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/deeplabv3) |
|
||
|
| DeepLabV3+ | MMSegmentation | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/deeplabv3plus) |
|
||
|
| UNet | MMSegmentation | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/unet) |
|
||
|
|
||
|
表中仅列出已测试模型,未列出的模型可能同样支持,可以自行尝试转换。
|
||
|
|
||
|
## Test
|
||
|
|
||
|
- Ubuntu 20.04
|
||
|
- tvm 0.9.0
|
||
|
|
||
|
| mmcls | metric | PyTorch | TVM |
|
||
|
| :----------------------------------------------------------------------------------------------------------------------------------------------------: | :----: | :-----: | :---: |
|
||
|
| [ResNet-18](https://github.com/open-mmlab/mmclassification/tree/master/configs/resnet/resnet18_b32x8_imagenet.py) | top-1 | 69.90 | 69.90 |
|
||
|
| [ResNeXt-50](https://github.com/open-mmlab/mmclassification/tree/master/configs/resnext/resnext50_32x4d_b32x8_imagenet.py) | top-1 | 77.90 | 77.90 |
|
||
|
| [ShuffleNet V2](https://github.com/open-mmlab/mmclassification/tree/master/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py) | top-1 | 69.55 | 69.55 |
|
||
|
| [MobileNet V2](https://github.com/open-mmlab/mmclassification/tree/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py) | top-1 | 71.86 | 71.86 |
|
||
|
|
||
|
<!-- | [Vision Transformer](https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-base-p16_ft-64xb64_in1k-384.py) | top-1 | 85.43 | 84.01 | -->
|
||
|
|
||
|
| mmdet(\*) | metric | PyTorch | TVM |
|
||
|
| :-------------------------------------------------------------------------------------: | :----: | :-----: | :--: |
|
||
|
| [SSD](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd300_coco.py) | box AP | 25.5 | 25.5 |
|
||
|
|
||
|
\*: 由于暂时不支持动态转换,因此仅提供 SSD 的精度测试结果。
|
||
|
|
||
|
| mmseg | metric | PyTorch | TVM |
|
||
|
| :------------------------------------------------------------------------------------------------------------------------: | :----: | :-----: | :---: |
|
||
|
| [FCN](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py) | mIoU | 72.25 | 72.36 |
|
||
|
| [PSPNet](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py) | mIoU | 78.55 | 77.90 |
|