mmdeploy/tools/test.py

102 lines
3.9 KiB
Python
Raw Normal View History

import argparse
import mmcv
from mmcv import DictAction
from mmcv.parallel import MMDataParallel
from mmdeploy.apis import (init_backend_model, post_process_outputs,
prepare_data_loader, single_gpu_test)
from mmdeploy.apis.utils import assert_cfg_valid, get_classes_from_config
def parse_args():
parser = argparse.ArgumentParser(
description='MMDeploy test (and eval) a backend.')
parser.add_argument('deploy_cfg', help='Deploy config path')
parser.add_argument('model_cfg', help='Model config path')
parser.add_argument('model', help='Input model file.')
parser.add_argument('--out', help='output result file in pickle format')
parser.add_argument(
'--format-only',
action='store_true',
help='Format the output results without perform evaluation. It is'
'useful when you want to format the result to a specific format and '
'submit it to the test server')
parser.add_argument(
'--metrics',
type=str,
nargs='+',
help='evaluation metrics, which depends on the codebase and the '
'dataset, e.g., "bbox", "segm", "proposal" for COCO, and "mAP", '
'"recall" for PASCAL VOC in mmdet; "accuracy", "precision", "recall", '
'"f1_score", "support" for single label dataset, and "mAP", "CP", "CR"'
', "CF1", "OP", "OR", "OF1" for multi-label dataset in mmcls')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--show-dir', help='directory where painted images will be saved')
parser.add_argument(
'--show-score-thr',
type=float,
default=0.3,
help='score threshold (default: 0.3)')
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--metric-options',
nargs='+',
action=DictAction,
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function')
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
# load deploy_cfg
deploy_cfg = mmcv.Config.fromfile(deploy_cfg_path)
model_cfg = mmcv.Config.fromfile(model_cfg_path)
assert_cfg_valid(deploy_cfg, model_cfg)
# prepare the dataset loader
codebase = deploy_cfg['codebase']
dataset, data_loader = prepare_data_loader(codebase, model_cfg)
# load the model of the backend
device_id = -1 if args.device == 'cpu' else 0
backend = deploy_cfg.get('backend', 'default')
model = init_backend_model([args.model],
codebase=codebase,
backend=backend,
class_names=get_classes_from_config(
codebase, model_cfg),
device_id=device_id)
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(codebase, model, data_loader, args.show,
args.show_dir, args.show_score_thr)
post_process_outputs(outputs, dataset, model_cfg, codebase, args.metrics,
args.out, args.metric_options, args.format_only)
if __name__ == '__main__':
main()