mmdeploy/tests/test_codebase/test_mmaction/test_mmaction_model.py

53 lines
1.8 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmengine import Config
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Backend, Codebase, load_config
from mmdeploy.utils.test import WrapModel, check_backend, get_rewrite_outputs
try:
import_codebase(Codebase.MMACTION)
except ImportError:
pytest.skip(
f'{Codebase.MMACTION} is not installed.', allow_module_level=True)
@pytest.mark.parametrize('backend', [Backend.ONNXRUNTIME])
@pytest.mark.parametrize('model_cfg_path',
['tests/test_codebase/test_mmaction/data/model.py'])
def test_forward_of_base_recognizer(model_cfg_path, backend):
check_backend(backend)
deploy_cfg = Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmaction', task='VideoRecognition'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
model_cfg = load_config(model_cfg_path)[0]
from mmaction.apis import init_recognizer
model = init_recognizer(model_cfg, None, device='cpu')
img = torch.randn(1, 3, 3, 224, 224)
from mmaction.structures import ActionDataSample
data_sample = ActionDataSample()
img_meta = dict(img_shape=(224, 224))
data_sample.set_metainfo(img_meta)
rewrite_inputs = {'inputs': img}
wrapped_model = WrapModel(
model, 'forward', data_samples=[data_sample], mode='predict')
rewrite_outputs, _ = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
assert rewrite_outputs is not None