mmdeploy/tests/test_codebase/test_mmpose/data/model.py

258 lines
7.2 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
# model settings
2022-05-27 10:58:26 +08:00
import mmpose
from packaging import version
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
model = dict(
type='TopDown',
pretrained=None,
backbone=dict(type='ResNet', depth=18),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=512,
out_channels=17,
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=False,
post_process='default',
shift_heatmap=False,
modulate_kernel=11))
data_cfg = dict(
image_size=[192, 256],
heatmap_size=[48, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
# here use_gt_bbox must be true in ut, or should use predicted
# bboxes.
use_gt_bbox=True,
det_bbox_thr=0.0,
bbox_file='tests/test_codebase/test_mmpose/data/coco/' +
'person_detection_results' +
'/COCO_val2017_detections_AP_H_56_person.json',
)
test_pipeline = [
dict(type='LoadImageFromFile'),
2022-05-27 10:58:26 +08:00
# dict(type='TopDownGetBboxCenterScale'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
2022-05-27 10:58:26 +08:00
# compatible with mmpose >=v0.26.0
if version.parse(mmpose.__version__) >= version.parse('0.26.0'):
test_pipeline.insert(1, dict(type='TopDownGetBboxCenterScale'))
dataset_info = dict(
dataset_name='coco',
paper_info=dict(),
keypoint_info={
0:
dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''),
1:
dict(
name='left_eye',
id=1,
color=[51, 153, 255],
type='upper',
swap='right_eye'),
2:
dict(
name='right_eye',
id=2,
color=[51, 153, 255],
type='upper',
swap='left_eye'),
3:
dict(
name='left_ear',
id=3,
color=[51, 153, 255],
type='upper',
swap='right_ear'),
4:
dict(
name='right_ear',
id=4,
color=[51, 153, 255],
type='upper',
swap='left_ear'),
5:
dict(
name='left_shoulder',
id=5,
color=[0, 255, 0],
type='upper',
swap='right_shoulder'),
6:
dict(
name='right_shoulder',
id=6,
color=[255, 128, 0],
type='upper',
swap='left_shoulder'),
7:
dict(
name='left_elbow',
id=7,
color=[0, 255, 0],
type='upper',
swap='right_elbow'),
8:
dict(
name='right_elbow',
id=8,
color=[255, 128, 0],
type='upper',
swap='left_elbow'),
9:
dict(
name='left_wrist',
id=9,
color=[0, 255, 0],
type='upper',
swap='right_wrist'),
10:
dict(
name='right_wrist',
id=10,
color=[255, 128, 0],
type='upper',
swap='left_wrist'),
11:
dict(
name='left_hip',
id=11,
color=[0, 255, 0],
type='lower',
swap='right_hip'),
12:
dict(
name='right_hip',
id=12,
color=[255, 128, 0],
type='lower',
swap='left_hip'),
13:
dict(
name='left_knee',
id=13,
color=[0, 255, 0],
type='lower',
swap='right_knee'),
14:
dict(
name='right_knee',
id=14,
color=[255, 128, 0],
type='lower',
swap='left_knee'),
15:
dict(
name='left_ankle',
id=15,
color=[0, 255, 0],
type='lower',
swap='right_ankle'),
16:
dict(
name='right_ankle',
id=16,
color=[255, 128, 0],
type='lower',
swap='left_ankle')
},
skeleton_info={
0:
dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
1:
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
2:
dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]),
3:
dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]),
4:
dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]),
5:
dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]),
6:
dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]),
7:
dict(
link=('left_shoulder', 'right_shoulder'),
id=7,
color=[51, 153, 255]),
8:
dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]),
9:
dict(
link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]),
10:
dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]),
11:
dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
12:
dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]),
13:
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
14:
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
15:
dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]),
16:
dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]),
17:
dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]),
18:
dict(
link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255])
},
joint_weights=[
1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.5, 1.5, 1., 1., 1.2, 1.2, 1.5,
1.5
],
sigmas=[
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062,
0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
])
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
test_dataloader=dict(samples_per_gpu=32),
test=dict(
type='TopDownCocoDataset',
ann_file='tests/test_codebase/test_mmpose/data/annotations/' +
'person_keypoints_val2017.json',
img_prefix='tests/test_codebase/test_mmpose/data/val2017/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info=dataset_info),
)